Трудноизвлекаемый запас - нефть. «Газпром нефть» внедряет новые технологии разработки трудноизвлекаемых запасов в Томской области

1.1 Характеристика трудноизвлекаемых запасов нефти

Дефиниции трудноизвлекаемых запасов углеводородов (далее ТрИЗ) в нормативной правовой базе нет. Однако необходимо отметить, существующая нефтегазовая терминология, четко отделяет запасы от ресурсов и геологические запасы от извлекаемых. «…К извлекаемым запасам относится часть геологических запасов, извлечение которых из недр на дату подсчета экономически эффективно в условиях конкурентного рынка при рациональном использовании современных технических средств и технологий добычи с учетом соблюдения требований по охране недр и окружающей среды.

То есть, запасы, можно назвать извлекаемыми, в том числе и трудно, только тогда, когда они могут экономически эффективно извлекаться в условиях конкурентного рынка при рациональном использовании современных технических средств и технологий добычи с учетом соблюдения требований по охране недр (ОН) и окружающей среды(ОС). Трудноизвлекаемые запасы нефти содержатся в залежах или частях залежей, отличающихся сравнительно неблагоприятными для извлечения УВ геологическими условиями залегания нефти и (или) аномальными физическими её свойствами.

В пластах с трудноизвлекаемыми запасами наблюдается чрезвычайно сложный механизм вытеснения нефти, связанный с одновременным влиянием множества факторов, таких, как капиллярные явления, вязкостные силы, фазовые переходы в сочетании со слоистой неоднородностью.

Трудноизвлекаемыми запасами нефти называются нефтяные залежи, для которых характерны неблагоприятные условия для добычи данного ресурса, а также неблагоприятные физические свойства. Кроме этого, к данному типу нефтяных залежей также относятся и те, которые располагаются в шельфовой зоне, в месторождениях, находящихся в поздней стадии разработки, а также высоковязкая нефть. Хорошим примером добычи высоковязкой нефти является разработка Ямало-Немецкого месторождения, которое имеет особенности, способствующие застыванию нефти не только на морозе, но и при плюсовой температуре.



Под «трудноизвлекаемыми» запасами понимаются месторождения или объекты разработки, которые характеризуются неблагоприятными для добычи нефти геологическими условиями или (и) ее физическими свойствами. ТИН могут считаться запасы в шельфовой зоне, остатки нефти в месторождениях, которые находятся в поздней стадии разработки, а также нефть с высокой вязкостью.

В «Классификации трудноизвлекаемых запасов» (Халимов Э. М., Лисовский Н. Н.) все критерии отнесения запасов к трудноизвлекаемым объединены в пять групп по признакам: - аномальности свойств нефтей и газов (вязкость);

Неблагоприятности характеристик коллекторов (низкие значения коэффициентов пористости, нефтенасыщенности, проницаемости, латеральная и вертикальная неоднородность пластов);

Типам контактных зон (нефть-пластовая вода, нефть-газовая шапка);

Технологическим причинам (выработанность);

Горногеологическим факторам, осложняющим (удорожающим) бурение скважин и добычу нефти.

Отсутствует понятие коллектор/неколлектор с точки зрения граничных значений пористости и проницаемости; - основное влияние на содержание углеводородов и качество запасов оказывает степень катагенеза твердого органического вещества (керогена);

Для прогноза продуктивных и перспективных зон необходима выработка комплекса специфичных геологических критериев и признаков;

Нетрадиционность пород баженовской свиты требует изучения не только петрофизических, но и геохимических характеристик пород.

Баженовская свита сложена карбонатно-глинисто- керогенкремнистыми породами. Толщина кремнистых и карбонатных прослоев не превышает 2-3 м. Они не имеют широкого площадного распространения даже в пределах локальных структур, в связи с этим они не могут рассматриваться как объекты разработки. В этом состоит отличие баженовской свиты от широко известной формации Бакен (крупнейшее месторождение «сланцевой» нефти в США).

1.2 Мировые ресурсы нефти из трудноизвлекаемых запасов нефти

В Энергетической стратегии России на период до 2030 года указаны следующие параметры развития нефтяной отрасли: добыча нефти в 2030 году в объеме 530 млн т и достижение коэффициента извлечения нефти (далее КИН) 0,35–0,37.

В настоящее время средний КИН составляет:

0,38–0,45 для активных запасов;

0,10–0,35 для низкопроницаемых коллекторов (НПК), которых в России более 25 %;

0,05–0,25 для высоковязких нефтей.

Добыча нефти в России по итогам 2016 г. выросла до максимальных показателей с 1990 г. и составила 547,5 млн т нефти. При этом абсолютный максимум добычи на территории РСФСР был достигнут в 1988 г. и составил около 570 млн т.

В настоящее время доля России в мировой добыче нефти составляет 12,5 %. Западная Сибирь с ее Ханты-Мансийским и Ямало-Ненецким округами остается центральными районами добычи в России. Она стоит в одном ряду с такими крупнейшими нефтегазовыми бассейнами, как Персидский и Мексиканский заливы, Сахара и Аляска.

В Дальневосточном федеральном округе прирост запасов нефти происходит в основном в Республике Саха (Якутия) .

По итогам 2016 г. прирост запасов в УФО составил около 231 млн т (+29 млн т относительно предыдущего года), Приволжском – 159 млн т (-33 млн т), Сибирском – 68 25 млн т (-14 млн т). В результате самое значительное сокращение прироста запасов произошло по ПФО.

Дефиниции трудноизвлекаемых запасов углеводородов (ТрИЗ) в нормативной правовой базе нет. Однако необходимо отметить, существующая нефтегазовая терминология, четко отделяет запасы от ресурсов и геологические запасы от извлекаемых.

На данный момент не только в России, но и в мире целом складывается следующая ситуация по запасам ТИН.

В настоящее время в условиях ухудшения сырьевой базы традиционных источников углеводородов в России баженовская свита является основным нетрадициооным источников углеводородов в России на долгосрочную перспективу.

Согласно оценке ИНГГ СО РАН в этих отложениях сосредоточено 150-500 млрд т геологических ресурсов нефти, в том числе в «высокоемких» коллекторах – 120-400 млрд т. Принимая коэффициент извлечения нефти 0,15, можно предварительно оценить извлекаемые ресурсы нефти баженовской свиты в районе 10-60 млрд т.

Карта перспектив нефтегазоносности баженовского горизонта Западно-Сибирской нефтегазоносной провинции приведена в приложении

Нетрадиционность баженовской свиты заключается в следующем:

Вся толщина баженовской свиты является нефтематеринской и содержит нефть и твёрдое органическое вещество;

Отсутствует понятие «залежь» с её атрибутами – водонефтяной контакт, внешним внутренним контуром, переходной зоной, зоной предельного нефтенасыщения и т.п.;

Отсутствует понятие коллектор/неколлектор с точки зрения граничных значений пористости и проницаемости;

Основное влияние на содержание углеводородов и качество запасов оказывает степень катагенеза твердого органического вещества (керогена);

Для прогноза продуктивных и перспективных зон необходима выработка комплекса специфичных геологических критериев и признаков; - нетрадиционность пород баженовской свиты требует изучения не только петрофизических, но и геохимических характеристик пород.

Баженовская свита сложена карбонатно-глинисто- керогенкремнистыми породами. Толщина кремнистых и карбонатных прослоев не превышает 2-3 м. Они не имеют широкого площадного распространения даже в пределах локальных структур, в связи с этим они не могут рассматриваться как объекты разработки. В этом состоит отличие баженовской свиты от широко известной формации Бакен (крупнейшее месторождение «сланцевой» нефти в США) .

Нефтематеринские породы, слагающие основную матрицу баженовской свиты, могут быть как непроницаемы, так и являться коллектором. Именно с этим коллектором связывают основные перспективы добычи нефти из баженовской свиты и её стратиграфического эквивалента нижнетутлеймской подсвиты.

Большинство из месторождений начали разрабатываться еще в советское время. С 2010 года по 2016 год добыча нефти в Западной Сибири (без учета льготируемого по НДПИ ЯНАО), снизилась с примерно 307,5 млн тонн до примерно 285,5 млн тонн в год (только по ХМАО добыча сократилась на 27 млн тонн, то есть на 10%). Добыча нефти в Северо-Западном федеральном округе составляет 33,7 млн т (около 6 % общероссийского показателя) (рис. 1).

Рисунок 1 - Прирост добычи нефти в Северо-Западном федеральном округе

Основой сырьевой базы в регионе является Тимано-Печорская нефтегазоносная провинция. В рамках провинции располагаются административные границы двух субъектов: Республики Коми и Ненецкого автономного округа.

Помимо Тимано-Печорской провинции, добыча нефти также осуществляется в Калининградской области, включая шельф.

Развитие нефтедобычи в Республике Коми идет с 1920-х гг. Пик добычи нефти приходится на середину 1980-х гг., когда добывалось более 19 млн т нефти в год, однако в течение 10 лет добыча сократилась до 7 млн т.

С середины 1990-х гг. по настоящее время происходит восстановление добычи нефти, что связано с интенсификацией добычи тяжелых и высоковязких нефтей. Широкомасштабная добыча нефти в Ненецком АО ведется с середины 1990-х гг. Пик добычи нефти в регионе пришелся на 2009-2010 гг. (более 18,8 млн т), после чего она несколько снизилась. Это связано с пересмотром прогноза развития ряда крупных базовых месторождений региона.

По итогам 2016 г. добыча нефти в Республике Коми составила 15,1 млн т. Добыча нефти в Ненецком автономном округе составляет 17,9 млн т. Суммарная добыча нефти в Тимано-Печорской провинции составила 33 млн т, что на 1,6 млн т выше уровня предыдущего года. В Калининградской области, включая месторождения на шельфе, добыто 0,7 млн т нефти. Условия работы нефтяных компаний ухудшаются по причинам, обусловленным геологическими характеристиками месторождений и производственными параметрами, такими как рост обводненности и истощенности месторождений .

Как следствие снижается дебит на действующих месторождениях (с 69 баррелей в сутки в 2012 году до примерно 64,8 баррелей в сутки в 2016 году). Для поддержания добычи приходится бурить на много больше и глубже: средняя глубина выросла на 162 м с 2012 по 2016 г. (с 2810 до 2972 м), а общая проходка за 5 лет выросла на 22% (с 21187 до 25786 тыс. м). При этом также растет количество ГТМ, необходимых для обеспечения экономически обоснованных дебитов – количество ГРП выросло в 1,4 раз за 5 лет.

Рисунок 2 – Изменение объемов нефтедобычи 2011-2016 гг. крупнейшими добывающими компаниями, млн. тонн

Рисунок 3 – Вклад крупнейших компаний в нефтедобычу в 2016 году, в %

При этом КИН в России составляет в среднем около 27-28%, при среднесрочном потенциале в 32%-35% и выше. Но потенциал может быть достигнут только в случае применения более совершенных технологий, в том числе применение третичных методов нефтеотдачи пластов, для этого необходим экономический стимул. Однако представленная динамика, по мнению специалистов, может быть сохранена в случае активного вовлечения в разработку трудноизвлекаемых запасов нефти, так как доля добычи на новых месторождениях Восточной Сибири незначительна (21%) , а добыча на месторождениях Западной Сибири будет падать на 3–4% в год, а также за счет увеличения прироста запасов.

Прирост запасов нефти в 2016 г. составил 575 млн. т, что на 21,2 % ниже уровня 2015 г. (730 млн т) и превысил текущий уровень добычи нефти по стране на 41 млн т, или на 7,7 % (рис. 4).

Рисунок 4 - Прирост запасов нефти в России

На протяжении последних 25 лет объём прироста запасов нефти имел неустойчивую динамику. В период с 1991 г. по 2004 г. наблюдалось в основном сокращение объёма прироста запасов нефти, а с 2005 г. Начался устойчивый рост.

В то же время уровень прироста запасов нефти, который бы обеспечивал расширенное воспроизводство сырьевой базы, т.е. превышал текущую добычу, был достигнут только в 2008 г. До этого на протяжении 14 лет происходило так называемое «проедание» запасов, т. е. объём разведанных и подготовленных к промышленной эксплуатации запасов нефти не компенсировал уровень текущего их изъятия из недр.

В последние годы меняется характер воспроизводства сырьевой базы нефти. В зрелых нефтегазоносных провинциях вновь открываемые месторождения и структуры представлены мелкими и мельчайшими по запасам нефти объектами, которые и дают в последние десятилетия основной прирост запасов в России. Продолжает ухудшаться структура разведанных запасов нефти и газа.

Происходит опережающая разработка наиболее рентабельных частей месторождений и залежей. Вновь подготавливаемые запасы сосредоточены в основном в средних и мелких месторождениях и являются в значительной части трудноизвлекаемыми .

В целом объем трудноизвлекаемых запасов составляет более половины разведанных запасов страны. Современное состояние минерально-сырьевой базы углеводородного сырья характеризуется относительно невысокими темпами воспроизводства жидких углеводородов. Перспективные извлекаемые запасы этого полезного ископаемого Российской Федерации на 1.01.2017 г. составляли 18340,1 млн. тонн.

Примером комплексного анализа свойств трудноизвлекаемой нефти может служить изучение закономерности пространственных и количественных изменений свойств вязкой нефти. Исследования свойств ВН проводились для нефтеносных территории мира. Из рисунке на котором приведены результаты геозонирования нефтегазоносной территории, видно, что бассейны с вязкой нефтью распространены повсеместно нефтегазоносных бассейнов содержат ВН, что составляет более 1/5 части от общего числа бассейнов мира. Больше всего бассейнов с ВН находится на территории Евразии.

Анализ информации из базы данных показал, что большинство ресурсов вязкой нефти сосредоточено между тремя континентами – Северная Америка, Южная Америка и Евразия. Так, основные запасы ВН (более 82 %) размещаются в ЗападноКанадском (Канада) и Оринокском бассейнах (Венесуэла). Россия обладает большими ресурсами вязкой нефти, где их общая доля составляет более 11 % общемировых ресурсов. Для этих территорий установлены далее пространственные закономерности размещения.

Рисунок – 5. Размещение нефтегазоносных бассейнов с вязкой нефтью на территории континентов с указанием доли их ресурсов от мировых

Здесь в качестве среднебассейнового значения вязкости использовано среднеарифметическое значение, а для нефтегазоносных бассейнов с менее чем десятью образцами ВН использовано медианное значение. Сверхвязкой является нефть Западно-Канадского (месторождение Атабаска), Санта-Мария, Лос-Анджелес, Грейт-Валли бассейнов в Северной Америке, Маракаибского и Оринокского НГБ в Южной Америке, Тимано-Печорского в Евразии и бассейнов Гвинейского залива и Сахаро-Ливийского в Африке. На территории Евразии самой вязкой является нефть Тимано-Печорского и Прикаспийского бассейнов.

Как видно ВН континентов отличается плотностью в Евразии вязкая нефть относится к подклассу «нефть с повышенной плотностью», в Южной Америке – к подклассу «сверхтяжелая», а в Северной Америке – «битуминозная». По вязкости евразийская вязкая нефть является высоковязкой, а в Америке – сверхвязкой. По содержанию серы ВН является в среднем сернистой (1¸3 %) в Евразии и Южной Америки, асфальтеновой (3¸10 %) в Евразии и высокоасфальтеновой (> 10 %) в Америке, высокосмолистой (> 10 %). Показано, что на территории Евразии вязкая нефть залегает в пластах с более высокими пластовыми температурой и давлением по среднему значению, чем в Америке.

В то же время, для вязкой нефти Евразии характерно более глубокое ее залегание – большинство ВН залегает на глубинах до 2000 м, большинство вязкой нефти Южной Америки залегают всего до 500 м, в Северной Америке глубина залегания еще меньше – до 400 м. Показано, что физико-химические характеристики ВН изменяются в зависимости от географического местоположения – менее тяжелой и вязкой, с меньшим содержанием в нефти серы, смол и асфальтенов является ВН Евразии. Таким образом установлено, что для нефтеносных территорий континентов подтверждается ранее выявленная закономерность – чем ниже глубина залегания, тем меньше плотность и вязкость в ВН, уменьшаются концентрации серы, смол и асфальтенов. Аналогичная зависимость изменения свойств ВН выявлена при изменении значений пластовых температур и давлений – чем выше температура и давление в пласте, тем плотность, вязкость, содержание серы, смол и асфальтенов в ВН меньше.

Таким образом, необходимость изыскания новых путей поиска, разведки и разработки месторождений углеводородов в связи с ростом нефтепотребления и увеличения запасов трудноизвлекаемой нефти определяет актуальность изучения физико-химических свойств и состава нефти. Для выполнения указанных исследований разработана и развивается базы данных по химии нефти, с использованием которой в течение ряда лет проводится комплексный анализ свойств трудноизвлекаемой нефти в зависимости от их географического положения, глубины залегания, возраста пород. С помощью комплексного анализа вязкой нефти выявлены пространственные закономерности ее распределения. Так, количество нефтегазоносных бассейнов, на территории которых есть вязкая нефть, значительно и составляет примерно 1/5 общего количества бассейнов в БД. Расположены эти бассейны на нефтегазоносных территориях Евразии, Африки и Америки, однако на территории Евразии они составляют большинство. Более 82 % запасов вязкой нефти сосредоточено на территориях Северной и Южной Америки. Показано, что для нефтеносных территорий разных масштабов (континент – страна нефтегазоносный бассейн) подтверждаются выявленные закономерности – чем ниже глубина залегания и чем выше температура и давление в пласте, тем меньше плотность и вязкость в ВН, уменьшаются концентрации серы, смол и асфальтенов. На примере изменения свойств российской ВН показана обратная зависимость для концентрации парафинов в ВН – чем ниже залежь и выше температура и давление в пласте, тем содержание парафинов увеличивается, как это видно для западно-сибирской нефти. Выявленные закономерности пространственных изменений физико-химических свойств вязкой нефти могут быть использованы с целью повышения прогнозов физикохимических свойств нефти вновь открываемых месторождений на новых территориях, в совершенствовании геохимических методов поиска месторождений и при решении других задач нефтяной геологии, в частности, при определении оптимальных схем и условий транспортировки нефти.

1.3 Ресурсная база трудноизвлекаемых запасов нефти ПАО «Газпром»

Трудноизвлекаемые запасы (ТрИЗ) играют все возрастающую роль в работе нефтегазовых компаний. В общем случае под ними подразумеваются запасы традиционных коллекторов, которые имеют невысокую экономическую эффективность при разработке с существующим уровнем технологий, освоенности и доступности разрабатываемых территорий. В НТЦ была разработана собственная классификация ТрИЗ с учетом осложняющих добычу геолого-технологических факторов.

Согласно этой классификации, около половины текущих запасов «Газпром нефти» являются трудноизвлекаемыми.

Для роста и поддержания высокого уровня добычи ТрИЗ необходимо вовлекать в разработку. Одной из ключевых задач НТЦ является поиск и оценка новых технологий для освоения этой категории запасов. В НТЦ создана методика и программное обеспечение, позволяющее выполнить массовые расчеты для экономической оценки вовлечения ТрИЗ в добычу, в том числе для оценки эффекта от применения новых технологий с учетом налогового режима.

С 2011 г. компания дополнительно вовлекла в разработку порядка 160 млн тонн ТрИЗ, а к 2020 г. планируется удвоить эту цифру. Для эффективной работы с ТрИЗ «Газпром нефть» использует инновационные технологии, занимаясь бурением горизонтальных и многоствольных скважин, а также применяя операции многостадийного гидроразрыва пласта (далее МГРП).

Кроме того, «Газпром нефть» ежегодно проводит отраслевую научно-техническую конференцию по работе с трудноизвлекаемыми запасами.

По результатам проведенной государственной экспертизы Федеральным агентством по недропользованию извлекаемые запасы месторождения «Газпром нефти» имени Александра Жагрина в Ханты-Мансийском автономном округе увеличены до 31 млн тонн нефтяного эквивалента. Таким образом комиссия подтвердила сделанный экспертами геологический прогноз по площади нефтеносности участка, уточнив ранее сделанный предварительный расчет. Согласно действующей классификации нефтяных участков, месторождение имени Александра Жагрина отнесено к категории крупных .

Месторождение было открыто в конце 2017 года на перспективном лицензионном участке в Кондинском районе Ханты-Мансийского автономного округа - Югры.

Геологоразведочные работы на лицензионном участке в Кондинском районе Ханты-Мансийского автономного округа - Югры ведет «Газпромнефть-Хантос», дочерняя компания «Газпром нефти». В кратчайшие сроки в условиях полной автономии были подготовлены и проведены сейсморазведочные работы, создана геологическая модель резервуара, пробурена поисково-оценочная скважина глубиной более 3 тыс. метров. При испытании основного перспективного объекта первой поисково-оценочной скважиной был получен приток безводной нефти с расчетным дебитом 50 куб. м в сутки.

Подгазовые залежи - существенная часть запасов, с которыми «Газпром нефти» придется иметь дело в самой близкой перспективе. Достаточно сказать, что подобные залежи есть на таких крупных месторождениях, как Восточно-Мессояхское и Новопортовское, и сразу становится ясно: успех принятой в 2016 году программы технологического развития по разработке подгазовых залежей будет оказывать самое непосредственное влияние на показатели компании.

Подгазовые залежи или нефтяные оторочки - особый тип запасов, в которых над нефтяным слоем находится газовая «шапка», как правило, значительного объема. Нефтяная и газовая части в таких месторождениях связаны, и это вызывает различные сложности при их разработке.

Так, например, добыча газа без учета ее влияния на нефтяную часть часто приводит к потере существенной части запасов. А прорыв газа к нефтяной скважине может сделать дальнейшую добычу нефти из нее невозможной. Помимо Нового Порта и Мессояхи подгазовые залежи есть на Урманском, Арчинском, Новогоднем месторождениях «Газпром нефти», на Восточном участке Оренбургского нефтегазоконденсатного месторождения, Куюмбе и Чоне, а также на некоторых активах, которые разрабатываются совместно с компанией «Новатэк» (Яро-Яхинское, Самбургское месторождения). Кроме того, нефтяные оторочки присутствуют на многих месторождениях «Газпрома» (Заполярное, Уренгойское, Оренбургское, Ен-Яхинское, Чаяндинское, Песцовое), и материнская компания привлекает «Газпром нефть» для проведения работ на нефтяной части.

Запасы типа подгазовых залежей могут пополнять ресурсную базу нефтегазовых компаний и во время разработки месторождений «жирного» газа с высоким содержанием газового конденсата: в процессе добычи жидкая фаза может начать выделяться, формируя нефтяную оторочку.

В свою очередь на месторождениях легкой нефти с высоким содержанием растворенного в ней газа при изменении давления в процессе добычи может сформироваться техногенная газовая шапка, как это, в частности, произошло на Новогоднем месторождении.

Суммарные извлекаемые запасы нефти и конденсата в подгазовых залежах «Газпром нефти» превышают 500 млн тонн. Из них только около 300 млн тонн можно добыть с применением традиционных технологий. Еще более 200 млн тонн нефти в компании надеются извлечь благодаря реализации новой технологической программы, разработанной сотрудниками Научно-технического центра «Газпром нефти».

До последнего времени подгазовые залежи не пользовались большим спросом у российских нефтяников.

Причина этого кроется в различных особенностях таких запасов, осложняющих разработку и определяющих их статус, как трудноизвлекаемые. Достаточно сказать, например, что в отличие от традиционных нефтяных месторождений в подгазовых залежах на нефть, как правило, одновременно действуют два агента вытеснения: снизу - вода, а сверху - газ. Это усложняет прогнозирование нефтеотдачи и проектирование скважин, ведь больше параметров приходится брать в расчет.

Однако главная проблема при разработке подгазовых залежей, крайне негативно влияющая на их рентабельность, - прорывы газа к скважине. Чтобы их избежать или максимально отсрочить, депрессию в скважинах необходимо удерживать на относительно низком уровне. Это позволяет в итоге повысить коэффициент извлечения нефти (КИН), однако отрицательно сказывается на дебите, который напрямую зависит от величины депрессии на пласт .

Добыча в этом случае может оказаться нерентабельной. «Разработку большинства нефтяных оторочек „Газпром нефти“ невозможно вести традиционными методами, не допуская при этом прорывов газа и сохраняя положительную экономику, - отметил начальник управления научно-методического сопровождения геологии и разработки новых активов - Решением проблемы может стать увеличение коэффициента охвата».

Поэтому скважины на таких месторождениях делают все более длинными и многоствольными. Это позволяет увеличить площадь притока, одновременно понизить депрессию на пласт и сохранить приемлемые объемы добычи .

Справляться с неприятным газовым фактором помогает и еще одна перспективная технология - устройства контроля притока, состоящие из дистанционно управляемых клапанов и систем измерения на забое. Они позволяют ограничивать приток нефти в скважину и тем самым предупреждают прорывы газа, а если прорыв все-таки произошел, дают возможность отсекать проблемные участки ствола.

Вывести проект по разработке подгазовых залежей в плюс удается также за счет оптимизации затрат на бурение и инфраструктуру. Это дает возможность сократить сроки окупаемости и получить прибыль за более короткое время, пока газ и вода еще не успели добраться до скважин. При разработке месторождений, которые имеют как нефтяную, так и газовую часть, важно правильно определить приоритеты: будет ли более эффективной добыча нефти или газа, или, возможно, их стоит добывать одновременно.

Ключевыми параметрами здесь выступают так называемый М-фактор (соотношение объемов газовой и нефтяной частей) и толщина нефтяной оторочки. Если М-фактор высок, то есть газа на месторождении заметно больше, чем нефти, а толщина нефтяного слоя при этом не велика (менее 9 метров), как правило, следует делать выбор в пользу добычи газа.

В случае более мощной нефтяной оторочки добычу нефти и газа ведут одновременно. Относительно небольшая газовая шапка говорит о том, что преимущество стоит отдать нефти. В мировой практике при разработке нефтяных оторочек в 63% случаев выбор делался в пользу первоочередной добычи нефти. На 24% месторождений нефть и газ добывались одновременно, и лишь в 13% случаев добывался только газ.

В отличие от отечественных нефтяных компаний, мировые лидеры отрасли уже ни одно десятилетие ведут добычу нефти из подгазовых залежей. За это время был накоплен значительный опыт по борьбе с прорывами газа: для этого используют горизонтальные и многоствольные скважины, активные и пассивные системы управления притоком по стволу скважины, закачку в пласт различных химических составов.

Так, например, на месторождении Oseberg в Северном море компания Statoil строила горизонтальные скважины длиной до 2,5 км, а также использовала «умные» системы заканчивания с управлением притоком. На месторождении Shaybah в Саудовской Аравии бурились «фишбоны», имеющие до 10 стволов с общей протяженностью до 12 км. Системы управления притоком использовались на месторождении Troll в Северном море. Различные варианты поддержания пластового давления с закачкой воды и газа были опробованы компанией Petronas на месторождении Samarang в Малайзии. На ряде месторождений, в том числе в России, использовалось барьерное заводнение.

На месторождениях США (Northeast Hallsville и Byron) закачка полимеров на нефтяных оторочках обеспечила прирост КИН до 13%. Использование пенообразующих составов на месторождении Snorre позволило снизить газовый фактор на 50% на срок до 6 мес. Что касается «Газпром нефти», пока наибольших успехов компания добилась в освоении технологий бурения, которые помогают получать экономически рентабельный дебит по нефти .

Речь идет о строительстве протяженных горизонтальных, а также многоствольных скважин. Так, на Новопортовском месторождении уже пробурены скважина с двухкилометровым горизонтальным стволом, а также двуствольные скважины. На Восточно-Мессояхском месторождении компания осваивает строительство «фишбонов» с многочисленными ответвлениями. Пробурено уже четыре такие многоствольные скважины. Средняя суммарная длина их горизонтальных стволов с «отростками» составляет порядка 2500 метров.

Среди основных вызовов при разработке подгазовых залежей на активах «Газпром нефти» принятая программа технологического развития выделяет необходимость наращивать опыт по созданию интегрированных моделей месторождений, а также по применению различных систем поддержания пластового давления, совершенствовать используемые модели прогнозирования газового фактора, улучшать оборудование для геофизических исследований в условиях притока газа в скважину.

Важной задачей в рамках программы станет подбор наиболее подходящих конструкций заканчивания скважин в зависимости от горно-геологических условий, а также тестирование методов увеличения нефтеотдачи (далее МУН), которые могут защитить от прорывов газа (закачка разнообразных гелей, полимерных составов, пен и т. п.).

Так как при высоком содержании газа в нефти использование для ее подъема электрических центробежных насосов с газосепараторами становится неэффективным потребуется либо усовершенствовать эти агрегаты, либо отказаться от них в пользу газлифтного метода .

ВВЕДЕНИЕ............................................................................................................................................. 3

ТРУДНОИЗВЛЕКАЕМЫЕ ЗАПАСЫ И ПРИНЦИПИАЛЬНЫЕ РЕШЕНИЯ ПО

ИХ ВОВЛЕЧЕНИЮ................................................................................................................................ 4

1.1. Тенденции в недропользовании ХМАО-Югры.................................................................. 4

1.2. Понятие о трудноизвлекаемых запасах и их классификация..................................... 5

1.3. Принципиальные решения по длительно разрабатываемым месторождениям ХМАО-Югры 10

1.4. Современные технологии интенсификации добычи и повышения нефтеотдачи на месторождениях ХМАО-Югры........................................................................................................... 12

1.4.1. Основные подходы к применению гидроразрыва пласта............................................... 13

1.4.2. Бурение горизонтальных скважин..................................................................................... 15

1.4.3. Зарезка боковых стволов................................................................................................... 20

1.4.4. Основные решения по обработке призабойной зоны пласта........................................ 22

1.4.5. Нестационарное заводнение.............................................................................................. 23

1.5. Принципиальные решения по вовлечению в разработку низкопроницаемых коллекторов........................................................................................................ 25

1.6. Основные технологические решения по вовлечению в разработку мелких залежей нефти 28

1.7. Перспективные технологии вовлечения в разработку баженовско-абалакского комплекса 30

1.8. Принципиальные решения по разработке залежей высоковязкой нефти 33

2. ИННОВАЦИОННЫЕ технологии ДЛЯ вовлечения в разработку
трудноизвлекаемых запасов.......................................................................................................... 35

2.1. Общие сведения об инновационных технологиях........................................................ 35



2.2. Газовые и водогазовые методы воздействия на продуктивный пласт 38

2.3. Тепловые методы воздействия на продуктивный пласт.......................................... 41

2.4. Электромагнитное воздействие на продуктивный пласт........................................ 45

2.5. Термогазовое воздействие на продуктивный пласт.................................................. 48

2.6. Дилатансионное воздействие на продуктивный пласт............................................. 50

2.7. Комплексные физико-химические методы увеличения нефтеотдачи..................... 53

2.8. Технология резонансно-волнового воздействия.......................................................... 57

2.9. «Интеллектуальные» скважины.................................................................................... 59

Список используемой литературы.............................................................................................. 63


ВВЕДЕНИЕ

В учебном пособии к теоретическим и практическим занятиям по дисциплине «Разработка месторождений с трудноизвлекаемыми запасами» представлены актуальные вопросы, касающиеся проблем вовлечения в разработку трудноизвлекаемых запасов нефти и основных решений, направленных на преодоление факторов, затрудняющих их выработку. Представлен теоретический материал по наиболее известным инновационным технологиям разработки месторождений нефти и возможностях их применения в различных геолого-физических условиях.

При изучении дисциплины необходимы знания по следующим дисциплинам: математика, геология нефти и газа, физика нефтяного и газового пласта, подземная гидромеханика, а также основам проектирования, разработки и обустройства нефтяных месторождений.

Методические указания предназначены для студентов, обучающихся по

специальностям: 130503 – «Разработка и эксплуатации нефтяных и газовых

месторождений» и по направлению 131000 – «Нефтегазовое дело» для всех профилей, всех форм обучения.

Курс «Разработка месторождений с трудноизвлекаемыми запасами» предназначен для ознакомления магистров с современным состоянием и тенденциями в нефтедобыче, обуславливающими их причинами, а также возможностями улучшения выработки запасов посредством внедрения технологий воздействия на нефтесодержащие пласты.

ТРУДНОИЗВЛЕКАЕМЫЕ ЗАПАСЫ И ПРИНЦИПИАЛЬНЫЕ РЕШЕНИЯ ПО ИХ ВОВЛЕЧЕНИЮ

Тенденции в недропользовании ХМАО-Югры

Ханты-Мансийский автономный округ – Югра является основной базой нефтедобычи Российской Федерации. Максимальные объемы добычи нефти были достигнуты в 1985 году, когда было добыто 361 млн. т, после чего начался период неуклонного снижения. К 1996 году объемы годовой добычи упали до 165 млн. т., обводненность продукции скважин составила 84% при отборе менее 40% извлекаемых запасов. С 1998 года с учетом растущих цен на углеводородные продукты нефтяные компании стали наращивать добычу нефти. В 2007 г. был достигнут максимальный постперестроечный уровень добычи нефти для ХМАО-Югры - 278,4 млн. т. Однако с 2008 года уровни добычи снова начали снижаться. В 2013 году было добыто 255 млн. т нефти, что составило 49% российской и 7% мировой добычи.

Основным фактором снижения добычи нефти послужило ухудшение структуры запасов: в то время как разбуренные НИЗ выработаны более чем на 70%, запасы неразбуренные, содержащиеся в новых месторождениях, характеризуются менее благоприятными геолого-физическими условиями – нашедшими выражение в значительно более низких коэффициентах нефтеотдачи.

Согласно структуре запасов нефти ХМАО-Югры накопленная добыча нефти 10,2 млрд т, что составляет немногим более половины запасов. Текущие запасы промышленных категорий распределенного фонда недр составляют 8 млрд т, в составе которых 2,5 млрд т нефти в пластах с проницаемостью более 50 мД с обводненностью более 90%. Наибольшие запасы 2,6 млрд т содержат продуктивные пласты с проницаемостью от 10 до 50 мД и обводненностью 64%. Выработанность начальных извлекаемых запасов нефти этих пластов составляет 37% и делает их первоочередным объектом. В пластах с проницаемостью от 2 до 10 мД содержится 1,6 млрд т нефти с обводненностью продукции 44% и выработанностью начальных извлекаемых запасов 23%. В низкопроницаемых пластах с проницаемостью менее 2 мД содержится 1,3 млрд т нефти, что при применении современных технологий также являются объектами разработки.

На территории ХМАО-Югры в качестве традиционного применяется способ разработки, основанный на вытеснении нефти нагнетаемой в пласт водой. На длительно разрабатываемых месторождениях применение заводнения послужило причиной высокой доли воды в добываемой продукции. Тенденции к снижению добычи нефти, выбытию эксплуатационного фонда, а также текущие отборы воды, кратно превышающие текущие отборы нефти, свидетельствуют о том, что возможности заводнения по обеспечению роста нефтеотдачи на этих месторождениях в основном исчерпаны. Дальнейшая их разработка при нагнетании воды будет сопровождаться ростом доли воды в добываемой продукции и, как следствие, увеличением эксплуатационных затрат.

Для поддержания уровней добычи нефти и повышения нефтеотдачи на большинстве
нефтяных месторождениях проводятся геолого-технические мероприятия. В 2014 г. в ХМАО-Югре выполнено 26462 ГТМ, за счет которых добыто дополнительно 26 млн. т нефти (10,4 % общей добычи). По сравнению с 2013 г. число мероприятий увеличилось на 21,9 %, дополнительная добыча за счет ГТМ – на 8,6 %. Наиболее часто реализуемыми технологиями являются бурение горизонтальных скважин (ГС) и боковых стволов, различные модификации гидроразрыва пласта (ГРП), гидродинамические и физико-химические методы увеличения нефтеотдачи (МУН). Однако несмотря на рост объемов применения и дополнительной добычи нефти от ГТМ, их удельная эффективность снижается.

Перспективы нефтяной отрасли ХМАО-Югры связаны с доразработкой

месторождений, находящихся на завершающих стадиях эксплуатации, но обладающтх
значительными добычными возможностями, а также с реализацией потенциала новых
месторождений, характеризующихся более сложным строением и ухудшенными

фильтрационно-емкостными свойствами, эффективную выработку которых не обеспечивают традиционные технологические решения.

Для реализации добычного потенциала нефтяных месторождений ХМАО-Югры необходимо применение принципиально новых технологических решений, комплексное внедрение инновационных технологий повышения нефтеотдачи.

Табл.1. Модификации технологии ГРП на месторождениях Западной Сибири

Модификация технологии ГРП Краткая характеристика Назначение
Системный Обработка нагнетательной и добывающих скважин участка Поддержание потенциала пластов с низкой проницаемостью
Селективный Установка пакера между интервала перфорации Разделение разрывов продуктивных пачек
Большеобъемный Масса проппанта значительно выше средней по совокупности обработок Увеличение охвата пласта воздействием
Безпакерный Без установки пакера Щадящий ГРП при дефектах эксплуатационной колонны
Многозонный (на горизонтальной скважине) Множественный ГРП на горизонтальном участке ствола Интенсификация притока и увеличение охвата пласта воздействием
Комбинация проппанта различного фракционного состава Последовательная подача пачек проппанта, различающихся размером зерен Оптимизация упаковки трещины в сложнопостроенном разрезе
Использование проппантов с полимерным покрытием Подача на последней стадии зерен, покрытых смоло-полимерной оболочкой Снижение выноса проппанта из трещины
Принудительное закрытие трещины Отбор жидкости из трещины сразу после прекращения закачки Принудительное удаление нераспавшегося геля из трещины, фиксация более равномерной упаковки трещины
Концевое экранирование трещины (TSO) Пониженный объем подушки, увеличенный темп роста концентрации проппанта Создание широкой трещины. Ограничение длины трещины.
Создание экранируемой оторочки на кромке трещины гидроразрыва Буферная жидкость с цементным раствором Закупорка системы микротрещин на кромке магистральной трещины


Теоретически на дебиты горизонтальных скважин наряду с такими параметрами как депрессия, вскрытая нефтенасыщенная толщина, оказывает влияние длина горизонтального участка ствола. С увеличением длины горизонтального ствола до определенного предела дебит увеличивается. Однако в низкопродуктивных коллекторах проницаемостью порядка 10 мД, как показали теоретические исследования, увеличение длины горизонтального участка ствола более 200-300 м не приводит к существенному увеличению среднего дебита скважины.

Современные технологии позволяют успешно осуществлять проводку горизонтальных скважин с большим или инвертированным углом отклонения от вертикали. В случае пластов с малыми эффективными мощностями не редко применяется синусоидальная траектория проводки ствола скважины, что повышает вероятность вскрытия пропластков коллекторов. Направление горизонтального ствола уточняется после бурения пилотного ствола скважины и обработки данных, полученных в результате геофизических исследований.

Технология бурения ГС может вполне эффективно применяться в случае наличия:

Продуктивных пластов с малой эффективной нефтенасыщенной толщиной;

Низкопроницаемых и неоднородных пластов;

Залежей с обширными водонефтяными зонами;

Пластов с развитой системой вертикальных трещин.

Применение горизонтальных скважин может оказаться низкоэффективным в случае значительной расчлененности пластов либо заглинизированности пластов. Для повышения эффективности бурения ГС применяется многостадийный (многозонный) гидроразрыв пласта (МГРП). В результате МГРП не только повышается производительность скважины (как при обычном гидроразрыве), но и увеличивается область дренирования и обеспечивается гидродинамическая связь горизонтального ствола с невскрытыми пропластками. Данное обстоятельство позволяет рассматривать технологию многозонного гидроразрыва как метод увеличения нефтеотдачи - по крайней мере, на пластах с неоднородным геологическим строением. В качестве метода интенсификации многозонный гидроразрыв может применяться также на низкопроницаемых пластах.

На территории ХМАО многозонный гидроразрыв на горизонтальных скважинах применяется с 2009 года двумя крупнейшими недропользователями - ООО «ЛУКОЙЛ-Западная Сибирь» и НК «Роснефть». Опыт применения данной технологии отмечен на 15 месторождениях, включая Урьевское, Северо-Покачевское, Повховское, Ватьеганское, Тевлинско-Русскинское, Приобское и Самотлорское. Дебиты нефти по горизонтальным скважинам с многозонным гидроразрывом в 2-4 раза превышает аналогичный показатель по скважинам обычного профиля.

Кроме того, высокая расчлененность и геологическая неоднородность в отдельных случаях обуславливают необходимость специфического дизайна горизонтального бурения,

при котором горизонтальным участком вскрывается наиболее мощный из пропластков, тогда как на вышележащих пропластках профиль скважины близок к наклонно-направленному. Тем самым достигается максимизация дренируемой поверхности, за счет чего обеспечивается не только увеличение охвата по разрезу и площади, но и более высокая продуктивность.

Имеются и другие особенности бурения и размещения горизонтальных скважин для эффективной разработки неоднородных пластов. Во-первых, горизонтальные участки ориентированы в направлении застойных зон. Во-вторых, горизонтальные участки размещаются перпендикулярно фильтрационным потокам со стороны нагнетательных скважин. При этом площадная и очагово-избирательная системы превращаются в аналог рядных, где в качестве стягивающих рядов используются горизонтальные скважины. При корректно обоснованной ориентации такой системы с учетом особенностей строения пласта, напряженно-деформационного состояния существенно повышается эффективность вытеснения нефти. В-третьих, длина горизонтального участка принимается предельно возможной - т.е. сопоставимой с размерностью сетки скважин. Помимо стремления к максимальному охвату застойных зон такой подход продиктован высокой неоднородностью строения среднеюрских пластов, снижающей эффективность горизонтального бурения. Увеличение длины участка в таких условиях служит основным способом повышения производительности горизонтальной скважины.

Зарезка боковых стволов

Бурение боковых стволов применяется как метод повышения нефтеотдачи пластов и интенсификации добычи нефти, в основном, за счет улучшения гидродинамической связи скважины с пластом, а также с целью реанимации аварийных, не эксплуатируемых по геологическим причинам скважин с критическими значениями обводнённости и дебита нефти. Бурение боковых стволов может эффективно применяться на различных стадиях разработки залежей.

Бурение боковых стволов позволяет решить ряд важных задач:

Увеличить охват воздействием за счет вовлечения в разработку ранее неохваченных дренированием запасов - преимущественно в прикровельной части пласта, а также в низкопроницаемых пропластках;

Вовлечь в разработку зоны залежей, недоступные для других видов воздействия на пласт;

Существенно увеличить дебит нефти, особенно в низкопроницаемыхколлекторах, за счет увеличения поверхности взаимодействия скважины с пластом;

Высокообводненным, низкодебитным, аварийным и не эксплуатируемым по геологическим причинам скважинам. Благоприятными условиями для успешности зарезки бокового ствола является достаточно высокая нефтенасыщенная толщина, низкая расчлененность пласта и удалённость от воды (как пластовой, так и нагнетаемой).

К объектам, где данная технология может оказаться экономически не достаточно эффективной, относятся:

Высокопроницаемые пласты с большой эффективной толщиной;

Тонкие пласты с прослоями практически непроницаемых или малопроницаемых пород;

Трещиноватые нефтяные пласты, подстилаемые подошвенной водой, быстропрорывающейся по крупным вертикальным трещинам в скважины;

Продуктивные пласты с низкой величиной отношения вертикальной и горизонтальной проницаемостей породы;

Слабоизученные объекты разработки.

Массовое бурение боковых стволов на месторождениях Западной Сибири началась с 1998г. Успешность эксплуатации боковых стволов по оценкам ОАО «Сургутнефтегаз» в целом за весь период от бурения до окончания разработки залежи в среднем составляет 80%, по наклонно-направленным и пологим - 73%, по горизонтальным - 84% и по многоствольным горизонтальным - 100%.

Теоретически влияние боковых стволов на нефтеотдачу аналогично влиянию уплотняющего бурения, но с большей эффективностью. Бурение наклонно-направленного бокового ствола из уже пробуренной скважины равносильно одной дополнительной скважине. Скважину с пробуренным горизонтальным боковым стволом при проектировании разработки рассматривают как эквивалент трех скважин. Многоствольные скважины эквивалентны локальному уплотнению сетки скважин обычного профиля, кратному числу стволов.

Значительная часть объема бурения боковых стволов приходится на Самотлорское, Лянторское, Приобское и Ватинское месторождения (всего около трети всех проведенных операций). В масштабе округа областью применения боковых стволов служат длительно разрабатываемые объекты, отнесенные, главным образом, к неокомским отложениям.

За счет бурения боковых стволов с начала 2000-х гг в целом по округу обеспечено 55 млн. т нефти. Годовые объемы бурения имеют тенденцию к росту - за последние 10 лет они выросли почти в 2.5 раза. Между тем, удельная эффективность новых операций в указанный период снизилась вдвое - с 5.1 до 2.61 тыс. т. В среднем накопленная добыча нефти на 1 боковой ствол оценивается в 16 тыс. т, длительность эксплуатации - 3.5 года.

Нестационарное заводнение

Технология предусматривает увеличение упругого запаса пластовой системы путем периодического повышения и снижения давления нагнетания воды. Это является предпосылкой для возникновения внутри пласта нестационарных перепадов давления и соответствующих нестационарных перетоков жидкости между слоями (участками) разной проницаемости. При этом в полуцикл повышения давления нагнетания вода из слоев с большей проницаемостью внедряется в малопроницаемые слои, а в полуцикл снижения давления нефть из малопроницаемых прослоев перемещается в высокопроницаемую часть коллектора.

Продолжительности циклов должны быть неодинаковы, возрастая с некоторого минимального значения до максимальной экономически допустимой величины. Для полного капиллярного удержания воды в пористой среде при максимально возможной скорости извлечения нефти продолжительности циклов должны возрастать по квадратичной параболе.

Технология проходила испытания на месторождениях различных нефтедобывающих районов - Урало-Поволжья, Западной Сибири, Украины, Белоруссии и т.д. Первый этап промышленного внедрения метода охватывает период с 1965 г. по 1978 г. Особенностью этого этапа является перевод на циклическое заводнение отдельных участков и блоков месторождений, циклическое заводнение осуществлялось на базе существующей системы ППД при линейном заводнении.

Процесс нестационарного нагнетания воды с целью обеспечения колебаний в пласте в основном осуществлялся делением рядов нагнетательных скважин на примерно равные группы и созданием по ним разнофазных условий нагнетания. Колебания расхода по группам скважин создавались двумя способами:

1) при безостановочной работе всех нагнетательных скважин по смежным группам попеременно создавались разные фазы расхода воды изменением давления на устье скважин; такой способ применялся на Абдрахмановской, Азнакаевской и Южно-Ромашкинской площадях Ромашкинского месторождения; на Самотлорском, Вагинском и Меги-онском месторождениях Западной Сибири;

2) при попеременном отключении смежных групп скважин - при полной остановке одних групп по другим группам обеспечивалось увеличение приемистости; такой способ был рекомендован на Восточно-Сулеевской и Алькеевской площадях Ромашкинского месторождения, на участках месторождений Шаимского и Сургутского районов Западной Сибири, Украины, Самарской области. Длительность фаз противоположного знака несколько отличалась от расчетной и была равна в среднем 15 сут (полуциклы по 15 сут). Такие симметричные циклы применялись на месторождениях Урало-Поволжья, Украины, на месторождениях Правдинском и Усть-Балыкском (Солкинская площадь) Западной Сибири. На большинстве месторождений Западной Сибири длительность фазы уменьшения нагнетания была обычно меньше противоположной фазы.

Такая организация процесса удобна для рядных систем разработки; кроме того, при этом создаются условия для частичной смены направлений фильтрационных потоков.

Вместе с тем практически полностью отсутствовал резерв увеличения мощности системы ППД, в результате чего средние уровни нагнетания при циклике составляли 60...80 % доциклического уровня, что явилось отклонением от программы ОПР.

Был получен прирост добычи нефти, снижена обводненность продукции, в промысловых условиях подтвердились теоретические предпосылки применения циклического заводнения, были уточнены критерии применимости этого метода. Были выделены области параметров пластов и режимов работы скважин, при которых с высокой степенью надежности можно рассчитывать на максимальную эффективность циклического заводнения:

Для соотношения средних уровней компенсации: от 60 до 100%;

Для времени начала нестационарного воздействия: до 10 лет;

Для послойной неоднородности: более 0,5;

Для начальной нефтенасыщенности: от 55 до 75;

для средней проницаемости пласта: от 50 до 600 мД.

Применение нестационарного заводнения целесообразно на невыдержанных по площади, зонально неоднородных пластах большой площади, при сформированной системе заводнения на стадии снижающейся добычи. Данному критерию на территории ХМАО удовлетворяют пласты горизонтов АС-АВ и в меньшей степени - БС-БВ (последние выработаны в большей степени). Массовое применение гидродинамических методов отмечено в т.ч. на Федоровском, Приобском и Северо-Лабатъюганском месторождениях (25-30% мероприятий).

Всего с начала 2000-х гг вклад нестационарного заводнения в добычу нефти по округу составил 48 млн. т. При этом удельная эффективность мероприятий низкая: в последние 7 лет она составляла 300-500 т на скважинно-операцию. Падение эффективности нестационарного заводнения связано с выходом объектов, на которых оно применяется, на завершающую стадию разработки, сопровождающуюся расформированием системы заводнения.

Высоковязкой нефти

При разработке залежей высоковязких нефтей первой проблемой является быстрое, часто «прорывное» обводнение скважин на фоне низких темпов отбора и низкой выработки запасов объекта. В отсутствие интенсификации, по причине высокой вязкости нефти, а также низким величинам пластового давления (ограничивающим депрессию), входные дебиты скважин оцениваются в 0.5-1 т/сут на каждые 10 мД проницаемости. Т.е. при относительно высокой проницаемости в 100 мД дебит не превысит 10 т/сут. Наличие контактных зон ограничивает область применения гидроразрыва на пластах высоковязкой нефти, на территории ХМАО отнесенных к сеноманскому НГК. В этих условиях перспективно применение таких технологий, как нагнетание горячей воды, нагнетание водяного пара, нагнетание загущенной полимером воды, сочетание нагнетания загущенной воды и бурения скважин с пологим или горизонтальным положением ствола в пласте, а также термогазохимическое воздействие (нагнетание О 2)

При нагнетании горячей воды или пара за счет повышения температуры пластовой системы снижается вязкость нефти, уменьшается обводненность, продуктивность скважин по нефти растет. Однако данная технология имеет свои недостатки – тепловые методы воздействия эффективны только при достаточно плотной сетке скважин (до 4 га/скв. – расстояние между скважинами 200 м), кроме того, они характеризуются высокой стоимостью вследствие необходимости подогрева воды.

Другой эффективный метод воздействия – нагнетание растворов полимера. Эффект заключается в снижении темпов обводнения добывающих скважин, что достигается за счет увеличения вязкости вытесняющего агента (снижении его подвижности относительно нефти) и выравнивания фронта вытеснения – частичной изоляции высокопроницаемых промытых каналов. Обязательное условие для применения данной технологии – хорошие фильтрационно-емкостные свойства пласта для обеспечения достаточной продуктивности добывающих и приемистости нагнетательных скважин. Ограничением для данной технологии является температура пласта – полимеры сохраняют свои свойства при температуре не выше 90°С.

Поскольку высоковязкая нефть является тяжелой, можно выделить еще один вопрос – низкие товарные качества нефти. Следствием являются меньшая цена, большие затраты на переработку и, в итоге, низкая экономическая привлекательность разработки таких запасов. В качестве современных технологий можно предложить газовые и термогазовые методы воздействия, эффект от применения которых заключается в окислении нефти, снижении ее плотности и уменьшении доли тяжелых фракций. Кроме того, данный вид воздействия увеличивает продуктивность скважин за счет снижения вязкости нефти. Применение данной технологии требует специфического оборудования – насосно-компрессорные станции различной мощности, построение сети газопроводов, оборудование по подготовке агента воздействия.

Нефтеотдачи

Технологии физико-химического воздействия основаны на нагнетании

высокомолекулярных составов и направлены на повышение коэффициента нефтеотдачи за счет обеспечения равномерного вытеснения нефти из неоднородного продуктивного пласта. Эффект достигается за счет перераспределения потоков в пластах вследствие проникновения композиции вглубь пласта на значительные расстояния.

При нагнетании химических реагентов потокоотклоняющего свойства, в соответствии с законами подземной гидродинамики, происходит их продвижение в наиболее проницаемые прослои перфорированного интервала. В условиях разработки пласта за счет искусственного заводнения (нагнетания воды) эти прослои одновременно являются и в наибольшей степени промытыми водой. Взаимодействие нагнетаемого реагента с водой приводит к изменению гидродинамических характеристик последней и приводит к снижению ее подвижности. Соответственно, суммарный приток воды в скважину (обеспечиваемый главным образом за счет промытых прослоев) снижается без ущерба для притока нефти.

В числе технологий, основанных на физико-химическом воздействии, можно выделить нагнетание полимеров, биополимеров (БП), сшитых полимерных систем (СПС), полимердисперсных суспензий (ПДС), а также комплексное применение щелочей, поверхностно-активных веществ (ПАВ) и полимеров.

Наиболее широкое применение получил полимер ПАА (полиакриламид).

Полиакриламиды, используемые в полимерном заводнении, подвергаются частичному гидролизу, в результате чего анионные (отрицательно заряженные) карбоксильные группы (-COO-) оказываются разбросанными вдоль основной цепи макромолекулы. По этой причине полимеры называются частично гидролизованными полиакриламидами. Обычно степень гидролиза составляет 30-35% акриламидных мономеров; поэтому молекула частично гидролизованного полиакриламида отрицательно заряжена, что объясняет многие ее физические свойства.

Эта степень гидролиза была выбрана с таким расчетом, чтобы оптимизировать определенные свойства, как например, растворимость в воде, вязкость и удерживающую способность. Если степень гидролиза слишком мала, полимер не будет растворяться в воде. Если велика, его свойства будут слишком чувствительны к действию минерализации и жесткости.

В России потокоотклоняющие технологии применяются достаточно широко. В 2000-е годы среднегодовой охват действующего фонда ГТМ с их использованием составил 5.5%, что при численности действующих скважин порядка 90 тыс. ед. равносильно нескольким тысячам скважинно-операций в год. В то же время существует ряд проблем, препятствующих более масштабному использованию данной технологии.

Одним из факторов, ограничивающих применение полимерных технологий на месторождениях России, является высокая стоимость рабочего агента - ПАА. В настоящее время в стране используется импортный ПАА, стоимость которого составляет около 3 тыс. долл./т. Масштабы применения полимерных технологий в будущем будут определяться как возможностью снижения стоимости рабочего агента (в результате использования отечественного ПАА или альтернативного агента), так и динамикой мировых цен на нефть и налоговой политикой государства.

Кроме того, на некоторых месторождениях Западной Сибири применение полимерного заводнения имело низкую эффективность в связи с разбалансированностью системы разработки участка и низкой текущей компенсации отборов (менее 30 %). Во многих случаях было проведено недостаточное количество лабораторных испытаний, что сказалось на большом отклонении фактических данных от проектных. Кроме того, существует проблема некачественного контроля над продвижением химических реагентов в пласте.

Наконец, реагенты, используемые для физико-химического воздействия подвержены механической (под действием высоких скоростей потока) и термической деструкции. В последнем случае разрушение «гелевого» экрана происходит по мере роста температуры или в силу ее высокого начального значения. Следствием является подключение пропластка снова в разработку и отключение низкопроницаемых пропластков. Кроме того, процесс разрушения геля ускоряется за счет окислительных процессов под действием растворенного кислорода воздуха, привнесенного в систему через эжектор при дозировании ПАА в поток нагнетаемой в пласт воды.

Кроме пластовой температуры, на деструкцию полимеров также рН или жесткость воды. При нейтральном рН деструкция очень часто бывает незначительной, тогда как при очень низком или высоком рН, и особенно при высоких температурах, она бывает значительной. В случае частично гидролизованных полиакриламидов гидролиз разрушит тщательно подобранную степень гидролиза, присутствующую в исходном продукте.

Перечисленные проблемы могут быть решены использованием зарубежного опыта применения физико-химических МУН: таких его положений, как системность воздействия (вместо одиночных операций) и использование комплексных технологий – дающих эффект по нескольким направлениям и оттого менее чувствительным к неблагоприятным условиям.

Примером комплексной технологии служит одновременное нагнетание с полимерами поверхностно-активных веществ и щелочей. При этом щелочь взаимодействует с кислой нефтью, в результате чего выделяется поверхностно-активное вещество. В свою очередь, ПАВ снижает поверхностное натяжение на границе «нефть-вода», способствуя увеличению коэффициента вытеснения. Действие полимера аналогично эффекту традиционных физико-химических методов и выражается в уменьшении подвижности воды.

Системный характер эффекта от физико-химического воздействия достигается в тех случаях, когда оно осуществляется как модификация традиционного заводнения - с максимальным охватом нагнетательного фонда, а не отдельными краткосрочными операциями.

Специалисты концерна Shell используют технологии комплексного физико-химического воздействия на месторождениях США с 80-х годов. Первые испытания, проведенные на месторождении Уайт Касл, штат Луизиана, США, продемонстрировали эффективность технологии. Кроме того, положительный эффект в 1989 году получен на нескольких скважинах Лос-Анджелеса, где 38% нефти, оставшейся после других методов заводнения, было добыто в результате комплексного физико-химического заводнения.

На месторождениях Китая, таких как Дацин, Шенгли и Карамай, комплексное физико-химическое воздействие применяется примерно с середины 90-х годов. Воздействие осуществляется чередованием нагнетания полимерных растворов и ASP-систем в суммарных накопленных объемах, сопоставимых с поровым объемом пласта. Прирост коэффициента извлечения нефти за счет воздействия составляет 15-25%.

Получено значительное увеличение нефтедобычи с помощью комплексного физико-химического воздействия в Омане, на месторождении Мармул. Добыча на нем велась в течение 25 лет, однако извлечено было лишь 15% от запасов по причине высокой плотности и вязкости нефти. Данное обстоятельство обусловило низкую эффективность заводнения. С начала 2010 года недропользователь месторождения Мармул – компания PDO - ведет нагнетание полимерного раствора в объеме 100 тыс. баррелей (15 тыс. м3) в сутки. В планах недропользователя достичь прироста добычи на 8 тыс. баррелей (более 1 тыс. т) в сутки и повышении КИН с 15 до 25%

По другим примерам, таким как индийское месторождение Вирадж и месторождения канадской провинции Саскачеван, внедрение технологий комплексного физико-химического воздействия только начато, однако и там, несмотря на экстремальные геолого-физические условия, прогнозируется существенный прирост нефтеотдачи.

Предпочтительными для комплексного физико-химического воздействия являются пласты с высокими коллекторскими свойствами, длительно разрабатываемые с применением заводнения и содержащие нефть умеренной вязкости. При высокой вязкости нефти) необходимо сочетание физико-химического воздействия с тепловым.

Интеллектуальные» скважины

Под этим понятием в практике разработки нефтяных месторождений понимают технологии одновременно-раздельной эксплуатации многопластовых объектов и бурения многоствольных горизонтально-разветвленных скважин. В обоих случаях цель заключается в распределении нагнетаемой воды в интервалы с низким охватом дренированием и ограничении бесполезной циркуляции воды в промытых прослоях и застойных зонах.

Известно, что одновременное нагнетание воды в несколько пластов, неоднородных по проницаемости, приводит к быстрому обводнению залежей, низкому охвату их воздействием и образованию водяных блокад отдельных невыработанных зон. При этом ускоренное продвижение фронта вытеснения нефти водой по высокопроницаемым пластам приводит к прорывам воды к забоям добывающих скважин и как следствие возрастают объем попутно добываемой воды и затраты на ее нагнетание. Это в лучшем случае приводит к повышению себестоимости добычи нефти, а в худшем случае - выводу обводненной скважины из эксплуатации вместе с потерей неосвоенных запасов нефти, оставшихся в низкопроницаемых пластах. Практика одновременного нагнетания воды в несколько пластов приводит также к потере информации о фактических объемах нагнетаемой воды в каждый из пластов.

Промышленная добыча нефти и газа ведётся уже более века. Неудивительно, что вначале в разработку были вовлечены наиболее легкодоступные запасы углеводородов. Сейчас их становится всё меньше, а вероятность обнаружить новое гигантское месторождение, сравнимое с такими, как Самотлор, Аль-Гавар или Прудо-Бей, практически равна нулю. По крайней мере, в нынешнем столетии ничего подобного пока найдено не было. Хочешь-не хочешь, но приходится разрабатывать залежи трудноизвлекаемой нефти.

Трудноизвлекаемые запасы их можно поделить на две группы. К одной относятся залежи, обладающие низкой проницаемостью пластов (плотные песчаники, сланцы, баженовская свита). При этом нефть, извлечённая из таких залежей, по своим характеристикам вполне сопоставима с нефтью традиционных месторождений. К другой группе относятся месторождения тяжёлой и высоковязкой нефти (природные битумы, нефтяные пески).

Попытки добывать нефть из низкопроницаемых коллекторов традиционными методами приводят к следующему эффекту — вначале скважина даёт хороший приток нефти, который очень быстро заканчивается. Нефть извлекается лишь из небольшой зоны, вплотную прилегающей к перфорированному участку скважины, поэтому вертикальное бурение на таких месторождениях неэффективно. Поднять продуктивность скважины можно за счёт увеличения площади контакта с насыщенным нефтью пластом. Это достигается бурением скважин с большим горизонтальным участком и проведением сразу нескольких десятков операций гидроразрыва. Подобным способом добывается так называемая «сланцевая нефть».

При добыче природных битумов или сверхвязкой нефти гидроразрыв не поможет. Методы добычи такого сырья зависят от глубины залегания насыщенных нефтью пород. Если глубина невелика и составляет десятки метров, то применяется открытая добыча породы. При залегании нефти на глубине в сотни метров для её извлечения строятся шахты. В Канаде так разрабатываются нефтяные пески Альберты, в России примером может служить Ярегское месторождение. Добытая экскаватором порода измельчается, смешивается с горячей водой и подаётся в сепаратор, отделяющий нефть от песка. Вязкость полученной нефти столь высока, что исходном виде её невозможно перекачивать по трубопроводу. Для снижения вязкости нефть смешивается с технологическим растворителем, обычно используется бензин или солярка.

Если породу невозможно извлечь на поверхность, прогревание паром осуществляется под землёй. Технология парогравитационного воздействия, применяемая «Татнефтью» на Ашельчинском месторождении, основана на использовании пары горизонтальных скважин. В одну из них нагнетается пар, из другой отбирается нефть. Пар для закачки в скважину производится на специально построенной котельной. При глубоком залегании эффективность метода снижается из-за того, что температура пара заметно снижается по пути до пласта. Этого недостатка лишен разработанный «РИТЭКом» метод парогазового воздействия, предусматривающий получение пара непосредственно в пласте. Парогенератор устанавливается непосредственно в забое, в него подаются реактивы, которые взаимодействуют с выделением тепла. В результате реакции образуется азот, углекислый газ и вода. Растворение углекислого газа в нефти дополнительно снижает её вязкость.

Аналогичные проблемы испытывают газодобывающие компании. Наиболее удобны для разработки сеноманские залежи. Коллекторы сеноманского яруса обычно имеют высокую проницаемость, что позволяет эксплуатировать их традиционными вертикальными скважинами. Сеноманский газ «сухой», он на 97-99% состоит из метана и поэтому требует минимальных усилий на подготовку перед сдачей в транспортную систему.

Истощение сеноманских залежей заставляет газодобывающие компании переходить к трудноизвлекаемым запасам газа. Туронский ярус характеризуется низкой проницаемостью коллекторов, поэтому вертикальные скважины оказываются неэффективными. Тем не менее, туронский газ на 85-95% состоит из метана, что позволяет обойтись относительно недорогими методами его подготовки на промысле.

Хуже обстоит дело с газом, извлекаемым из валанжинского яруса и ачимовских отложений. Здесь залегает «жирный газ», кроме метана содержащий этан, пропан и другие углеводороды. Перед подачей газа в транспортную систему их необходимо отделять от метана, а для этого требуется сложное и дорогостоящее оборудование.

За одном месторождении могут быть выявлены залежи газа на различных ярусах. Например, на Заполярном месторождении газ залегает в туронских, сеноманских, неокомских и юрских отложениях. Как правило, сначала в добычу вовлекается наиболее доступный сеноманский ярус. На знаменитом Уренгойском месторождении первый сеноманский газ был получен в апреле 1978 года, валанжинский — в январе 1985 года, а к эксплуатация ачимовских залежей «Газпром» приступил только в 2009 году.

Анализ структуры остаточных извлекаемых запасов округа показывает, что дальнейшая реализация его добычного потенциала связана с вовлечением в разработку трудноизвлекаемых запасов нефти – низкопроницаемых коллекторов ачимовской толщи и тюменской свиты, отложений баженовской свиты, объектов с высоковязкой нефтью, мелких залежей, пластов с высоким газовым фактором.

В соответствии с современными представлениями трудноизвлекаемые запасы нефти содержатся в залежах или частях залежей, отличающихся сравнительно неблагоприятными для извлечения УВ геологическими условиями залегания нефти и (или) аномальными физическими её свойствами. В пластах с трудноизвлекаемыми запасами наблюдается чрезвычайно сложный механизм вытеснения нефти, связанный с одновременным влиянием множества факторов, таких, как капиллярные явления, вязкостные силы, фазовые переходы в сочетании со слоистой неоднородностью. Разработка таких объектов сказывается на технико-экономических показателях из-за необходимости применения нетрадиционных технологий, специального несерийного оборудования и пр.

В «Классификации трудноизвлекаемых запасов» (Халимов Э. М., Лисовский Н. Н., 2005 г.) все критерии отнесения запасов к трудноизвлекаемым объединены в пять групп по признакам аномальности свойств нефтей и газов (вязкость), неблагоприятности характеристик коллекторов (низкие значения коэффициентов пористости, нефтенасыщенности, проницаемости, латеральная и вертикальная неоднородность пластов), типам контактных зон (нефть-пластовая вода, нефть-газовая шапка), технологическим причинам (выработанность) и горногеологическим факторам, осложняющим (удорожающим) бурение скважин и добычу нефти.



Причины осложнения выработки запасов нефти можно разделить на две составляющие: естественные и техногенные, в соответствии с которыми при определении принадлежности залежей к группе ТрИЗ используются геологические, технологические и экономические критерии. По данным Государственного баланса запасов в достаточной степени достоверно судить о доле и характеристике ТрИЗ можно, используя только геологические критерии их определения.

В «Классификации…» достаточно формализованы признаки трудноизвлекаемости по свойствам нефтей, к которым можно отнести вязкость (>30мПа*с), битуминозность (плотность при 20оС >0.895 г/см 3) нефти, содержание в ней парафина (>6%) и серы (>3.5%). Эти параметры и их граничные значения учитывают технологию добычи, транспортировки, переработки сырья, обеспечивают его комплексное использование и содержатся в характеристиках залежей данных Госбаланса РФ. Дополнительно при отнесении залежей очень сложного геологического строения к группе ТрИЗ используется предельная величина КИН, равная по экспертной оценке 0.230.

По геологическим критериям в категорию ТрИЗ на территории ХМАО-Югры отнесены 1150 залежей, которые характеризуются аномальными физико-химическими свойствами нефти, являются подгазовыми зонами нефтегазоконденсатных залежей (нефтяные оторочки небольшой мощности) или приурочены:

К продуктивным отложениям текстурного строения типа «рябчик»;

К породам доюрского комплекса с латеральной и вертикальной неоднородностью фильтрационно-емкостных свойств резервуара, преобладающим кавернозно-порово-трещинным типом коллектора;

К макро- и микроанизотропным коллекторам отложений тюменской свиты «мозаичного» строения с высокой степенью неоднородности разреза;

К отложениям ачимовской толщи с ловушками клиноформного строения и неоднородным характером строения резервуара;

К отложениям баженовской свиты, характеризующимся сложным типом коллектора и резервуара.

Залежи нефти с аномальными физико-химическими свойствами. В эту
категорию ТрИЗ по данным Госбаланса относится 268 залежей большой группы пластов 52
месторождений ХМАО-Югры с начальными геологическими/извлекаемыми запасами
(НГЗ/НИЗ) нефти промышленных категорий АВС 1 в количестве 3178/511 млн.т и 1115/255
млн.т по категории С 2 . Накопленная добыча нефти составляет 459.2 млн.т – 47.3% от НИЗ
категорий АВС 1 . По критерию вязкости нефти из 52-х в эту категорию входят шесть
месторождений: Ван-Еганское, Восточно-Янлотское, Жумажановское, Западно-

Варьеганское, Остапенковское и Экутальское, суммарные НИЗ которых составляют 16% и 8% категорий АВС 1 и С 2 , накопленная добыча – 0.3%, степень выработанности запасов – 1.7% от НИЗ. Четыре месторождения из этих шести располагаются в западной части округа в пределах Красноленинской, Приуральской и Фроловской нефтегазоносных областей (НГО).

Залежи в отложениях пластов с «рябчиковой» текстурой сложены песчано-глинистыми породами алымской свиты, характеризующимися сильной литологической неоднородностью, тонким переслаиванием песчаных и глинистых включений различной формы и размеров. Основная отличительная особенность коллекторов «рябчиковой» текстуры состоит в том, что она представляет собой тонкое переслаивание песчано-алевролитовых и глинистых пород. В пачке «рябчика» чередование прослоев коллекторов и неколлекторов не всегда подчиняется закону параллельного напластования, а имеет более сложную мозаичную или «рябчиковую» текстуру. При оценке подсчётных параметров этих пластов по ГИС применяется модель анизотропного коллектора, поскольку она является более адекватной по сравнению с моделью порового коллектора с рассеянной глинистостью.

В эту категорию отнесено 12 залежей 9 месторождений ХМАО-Югры с начальными
геологическими/извлекаемыми запасами (НГЗ/НИЗ) нефти промышленных категорий АВС 1 в
количестве 69/15 млн.т и 107/22 млн.т по категории С 2 . Накопленная добыча нефти
составляет 1.4 млн.т – 9.5% от НИЗ категорий АВС 1 . Основная часть запасов всех категорий
(92%) сосредоточена в пластах АВ 1 1-2 трёх месторождений Большого Самотлора
(Мегионское, Нижневартовское, Северо-Покурское) и Лугового месторождения,

расположенных в пределах Вартовского нефтегазоносного района Среднеобской НГО.

Залежи в доюрском комплексе (ДЮК) приурочены к комплексу пород
дислоцированного складчатого основания (фундамента) и промежуточного комплекса
предположительно пермо-триасового возраста. Триасовые образования представлены
покровами основных эффузивов с прослоями туфов, песчаников, алевролитов и аргиллитов.
Фильтрационно-емкостные свойства пород доюрского комплекса невысокие. Эффективная
емкость коллекторов преимущественно кавернозно-поровая, преобладающий тип

коллектора – кавернозно-порово-трещинный. Несмотря на низкие фильтрационно-емкостные свойства пород по керну, при опробовании пород доюрского комплекса получены неплохие притоки нефти, обусловленные наличием трещин.

К образованиям доюрского комплекса приурочено 48 залежей 24 месторождений
ХМАО-Югры с начальными геологическими/извлекаемыми запасами (НГЗ/НИЗ) нефти
промышленных категорий АВС 1 в количестве 338/66 млн.т и 137/25 млн.т по категории С 2 .
Накопленная добыча нефти составляет 8.7 млн.т - 13.2% от НИЗ категорий АВС 1 .Основная
часть запасов всех категорий (91%) сосредоточена в отложениях триаса и коры
выветривания фундамента четырёх месторождений: Рогожниковского (с Северо-Рогожниковским), Высотного, Красноленинского и Северо-Даниловского. Территориально месторождения расположены в западной части округа в пределах Красноленинской и Приуральской НГО.

Залежи тюменской свиты приурочены к продуктивным отложениям с

неравномерным переслаиванием аргиллитов, алевролитов, песчаников и углей аален-
байос-бат-раннекелловейского возраста.. Особенностями продуктивного разреза тюменской
свиты являются сильная фациальная изменчивость отложений. По результатам керновых,
гидродинамических и индикаторных исследований установлена высокая степень послойной
и зональной фильтрационной неоднородности отложений. Зачастую по разрезу скважины
проницаемость слоев-коллекторов меняется на порядок и более, что существенно
сказывается на однородности выработки запасов. Толщина отдельных проницаемых
прослоев невелика и составляет, в основном, 0.5-2.0 м. Песчанистость разреза тюменской
свиты увеличивается вниз по разрезу, где, как правило, мощные песчаные тела
оказываются водонасыщенными. Среднее значение суммарной эффективной

нефтенасыщенной толщины залежей в скважинах изменяется в диапазоне 0.1-15 м и составляет, в среднем, около 4 м.

Запасы нефти отложений тюменской свиты имеют со стратиграфические индексы Ю 2-
9 , ЮС 2-9 , ЮК 2-9 , ЮВ 2-9 , Т 1-3 и «тюменская свита». На Государственном балансе РФ в
отложениях тюменской свиты по ТрИЗ числится 329 залежей 109 месторождений,
содержащих (НГЗ/НИЗ) 1672/350 млн.т нефти промышленных категорий АВС 1 и 3575/642
млн.т по категории С 2 . Накопленная добыча нефти составляет 39.0 млн.т - 11.2% от НИЗ
категорий АВС 1 . Наибольшая часть запасов всех категорий (60%) содержится на 11
месторождениях (Ай-Пимское, Восточно-Сургутское, Галяновское, Кечимовское,

Красноленинское, Ловинское, Рогожниковское, Родниковое, Русскинское, Средненазымское, Федоровское) с НИЗ в диапазоне 10-105 млн.т, расположенных в западной и центральной частях округа в пределах Красноленинской, Приуральской, Фроловской и Среднеобской НГО.

Залежи ачимовской толщи приурочены к отложениям нижней части осложненного подкомплекса неокома, разрез которого представляет собой неравномерное, часто линзовидное переслаивание алевролитов, песчаников и аргиллитоподобных глин. Из особенностей строения продуктивных пластов ачимовской толщи, осложняющих продуктивный резервуар, следует отметить высокую степень неоднородности как по латерали, так и по разрезу, а также преимущественно невысокие фильтрационно-емкостные свойства коллекторов - доминируют коллекторы IV-V класса по А.А. Ханину со средними значениями пористости 17% и нефтенасыщенности 51%. Среди коллекторов преобладают алевролиты, реже аркозовые песчаники средней сортировки с многочисленными включениями сидерита.

Продуктивные пласты индексируются по-разному, поэтому на Государственном балансе РФ запасы нефти ачимовских отложений учтены в объектах стратиграфических индексов: как БС 16 -БС 22 и БС 18 -БС 22 (до 1985 года), Ач, Ач 2 ...Ач 6 (после 1985-1991 г.г.). В последние годы при постановке на учёт Госбаланса подсчётным объектам ачимовской толщи присваивается двойной индекс – к примеру Ач(БС 10), в скобках указывается синхронный ачимовскому пласт покровного залегания на шельфе. На Государственном балансе РФ по ТрИЗ отложений ачимовской толщи числится 378 залежей 90 месторождений ХМАО-Югры с НГЗ/НИЗ промышленных категорий АВС 1 в количестве 568/113 млн.т и 771/147 млн.т по категории С 2 . Наибольшая часть запасов всех категорий (75%) содержится на 34 месторождениях с НИЗ 1-14 млн.т, расположенных в центральной и восточной частях округа. Накопленная добыча нефти составляет 15.8 млн.т - 14.0% от НИЗ категорий АВС 1 .

Залежи, связанные с подгазовыми зонами нефтяных оторочек небольшой мощности. На Государственном балансе РФ числится 22 нефтегазоконденсатные залежи группы пластов ПК 15-20 , АС 4-10 , БВ 6-21 по 11 месторождениям. Фильтрационно-емкостные свойства коллекторов достаточно высокие: пористость и нефтенасыщенность изменяются в широких пределах (Кп=19-34%, Кн=37-65%), преобладают коллекторы со средними значениями пористости 24% и нефтенасыщенности 51%. В 22 залежах содержатся НГЗ/НИЗ промышленных категорий АВС 1 в количестве 651/144 млн.т и 43/8 млн.т по категории С 2 . Накопленная добыча нефти составляет 122.1 млн.т - 84.9% от НИЗ категорий АВС 1 .

Залежи нефти баженовской (тутлеймской) свиты характеризуются сложным строением структуры порового пространства. Выделяется три морфологических типа коллекторов: трещинно-поровый, трещинный и трещинно-кавернозный. Пласты баженовской свиты характеризуются невысокими фильтрационно-емкостными свойствами: пористость 8-10%, трещинная ёмкость невелика и составляет 0.1-0.3%, проницаемость для коллекторов трещинного и трещинно-порового типа составляет 0.01-0.020 мкм 2 , нефтенасыщенность – около 80-90%. Продуктивность отложений слабо зависит от ёмкости порового пространства и, в большей степени, определяется фильтрационной сообщаемостью пор.

Особенности строения продуктивных отложений баженовской свиты влияют на однозначность определения стратиграфической принадлежности подсчётного объекта и на достоверность оценки запасов углеводородов. В настоящее время отсутствуют методики определения подсчётных параметров коллекторов в скважинах и площадного картирования продуктивного резервуара баженовских отложений по данным полевых и дистанционных методов исследований. При оперативных оценках запасов в последние годы параметры утверждаются условно в зависимости от результатов опробований: при получении притока нефти эффективная нефтенасыщенная толщина принимается как 1/3 от общей в высокоомной части свиты, величина открытой пористости коллекторов - равной 8% и нефтенасыщенности - 85%, площадь нефтеносности залежи ограничивается зоной дренирования скважины.

На Государственном балансе РФ запасы нефти отложений баженовской свиты учтены в пластах со следующими стратиграфическими индексами: Ю 0 , ЮК 0 , ЮК 0-1 , ЮС 0 , ЮС О К и «баженовская свита» по 93 залежам 44 месторождений, в которых содержится (НГЗ/НИЗ) 1058/269 млн.т нефти промышленных категорий АВС 1 и 834/194 млн.т по категории С 2 . Накопленная добыча нефти составляет 5.6 млн.т - 2.1% от НИЗ категорий АВС 1 . В нераспределённом фонде недр ХМАО-Югры находятся 77% НИЗ всех категорий, в том числе 83% промышленных категорий ВС 1 . Основную часть составляют уникальные по объёму запасы нефти пласта Ю 0 Салымского месторождения, однако достоверность их невысока, поскольку полный пересчёт запасов нефти этого месторождения не проходил Госэкспертизу ГКЗ с 1986 года. Доля начальных извлекаемых запасов нефти остальных месторождений, экспертиза которых осуществлялась ФГУ «ГКЗ» Роснедра в последние годы, незначительна и составляет в общем балансе не более 20% (10% промышленных категорий ВС 1). Залежи нефти в пласте Ю 0 расположены в западной и центральной частях округа в пределах Красноленинской, Фроловской и Среднеобской НГО.

28/01/2014

В последнее время вопросы о разработке новых месторождений по добыче нефти звучат все громче. Это естественно, потому как человечество уже израсходовало большую часть этого ископаемого ресурса. Для России нефтяные вопросы стоят в разы острее, чем для многих других стран, потому что объем мощности российского сектора по нефтепереработке находится на третьем месте в мире. Впереди лишь американцы и китайцы.

Сохранить объемы добычи очень важно для поддержания российской власти и влиятельности нашей страны на мировой арене. Но по прогнозам аналитиков, в обозримом будущем лидировать по росту добычи «черного золота», будет не Россия, а Канада, Бразилия и США. Добыча этого ресурса в нашей стране падает с 2008 года. А в 2010 Министерство энергетики заявило, что без кардинальных изменений в политике нефтедобывающей и нефтеперерабатывающей отрасли показатели могут упасть с 10.1 миллиона баррелей в день в 2010 году до 7,7 миллиона баррелей в день в 2020-м. Все это говорит о том, что у России заканчивается нефть? Нет. Запас у страны огромен, но его большая часть уже относится к разряду «трудноизвлекаемых». У России, по мнениям экспертов, есть все шансы стать мировым лидером по добыче «нетрадиционной» нефти. Минэнерго подсчитало, что ее запасы в стране около 5-6 млрд. тонн, а это 50-60% от общего числа. Количество же сланцевой нефти во много раз выше тех, которыми располагают США. Именно «нетрадиционная» нефть сохранит стране заявленные объемы добычи и поможет удержать позиции лидера в этой сфере.

Для начала давайте попытаемся определить, что понимают под «трудноизвлекаемыми» запасами. Это месторождения или объекты разработки, которые характеризуются неблагоприятными для добычи нефти геологическими условиями или (и) ее физическими свойствами. «Трудноизвлекаемыми» могут считаться запасы в шельфовой зоне, остатки нефти в месторождениях, которые находятся в поздней стадии разработки, а также нефть с высокой вязкостью. Примером последней может служить месторождение Ямало-Ненецкого округа. Здесь нефть застывает не только на морозе, но даже при обычной температуре. Она требует в переработке специальных технологий: ее невозможно перекачать по трубопроводам, а следует возить в нарезанных кубах. Извлечь такие запасы, безусловно, можно, но при этом важно получить экономическую выгоду.

Добыча «нетрадиционной» нефти требует больших материальных затрат, труда, применения дорогостоящих новейших технологий, дефицитных реагентов и материалов. Эксперты подсчитали, что стоимость «трудной» нефти может составлять 20 долларов за баррель, в то время, как нефть из обычных месторождений стоит от 3 до 7 долларов. Еще одной сложностью при добыче «нетрадиционных» запасов при проектировании и разработке месторождений становится необходимая предельная точность расчетов. Не всегда для ученых становится возможным определение подхода для результативного итога работы таких месторождений. Совсем недавно в одном из мест с «трудной» нефтью пробурили две скважины. Одна из них стала давать предполагаемый объем, а вторая – нет, и причина этого пока неясна. Все проблемы, сопряженные с добычей «нетрадиционной» нефти достаточно глобальны, и решение их невозможно без всесторонней поддержки государства.

События прошлого десятилетия, произошедшие в США, которые впоследствии назвали «сланцевой революцией», убедили весь мир в том, что извлекать «нетрадиционную» нефть с выгодой все же можно. Методы горизонтально направленного бурения и гидроразрыва пласта (разрывы сланцевых пород при этом происходят при подаче под землю большого напора смеси воды, песка и химикатов) обнаружили большие запасы газа и нефти, считавшиеся «трудными». Добыча этих ископаемых резко увеличилась. Только на одном из месторождений с 2008 к 2012 году она выросла со 100 баррелей в день до 1 миллиона. В то время, как добыча в США стремительно росла, в России она оставалась на том же уровне. Хотя, еще в 1987 году СССР в нефтеперерабатывающей промышленности занимал первое место. Мы добывали 11,4 баррелей в сутки.

В 1996 году, после распада Советского Союза отмечен исторический минимум – 6 млн. баррелей. В условиях неразберихи 90-х годов у крупных российских нефтяных компаний не было стимула разрабатывать новые месторождения. Как итог, еще и сегодня эксплуатируются те, которые были открыты в начале 1970-х годов. В результате многие эксперты считают, что нефтяной сектор России работает на пределе возможностей. Затраты на производство растут, а объем добычи на унаследованных от СССР «зрелых» месторождениях остается на прежнем уровне.

Это еще одна веская причина необходимости разработки новых, «труднодноизвлекаемых» ресурсов. Кстати, советские геологи открыли многие «трудные» месторождения еще в 1960-х годах, оставив их для освоения будущим поколениям. Это запасы Баженовской, Абалакской, Фроловской свит Западной Сибири, это места в Карском и Баренцевом морях, это многие районы Сахалина. Баженовская свита – самая крупная в мире сланцевая формация. Согласно оценкам экспертов ее запасы могут составить до 120 млрд. тонн извлекаемой нефти. А это в 5 раз больше, чем запасы на месторождении Баккен в США. Именно оно стало движущей силой американской сланцевой революции. Причем нефть Баженовской свиты считают высококачественной, из нее можно сделать 60% светлых нефтепродуктов.

На «трудных» месторождениях уже работают «Газпром нефть», «ЛУКОЙЛ», «Роснефть», «Сургутнефтегаз». Просто перенять американский опыт по добыче «трудноизвлекаемой» нефти мы не можем, потому как, и условия, и сама нефть значительно отличается от североамериканской. Наша — намного «тяжелее», нуждается в больших затратах энергии при добыче. Ее месторождения находятся в значительно более отдаленных местах, чем аналогичные в Америке. Но без использования иностранного опыта в этой сфере России не обойтись. В 2012 году «Роснефть» договорилась с американской Exxon Mobil сотрудничать в разработке месторождений Баженовской и Ачимовской свит. «Газпром нефть» на Баженовской свите работает с англо-голландской Royal Dutch Shell.

У России есть все шансы стать ведущей страной в мире по добыче «трудноизвлекаемой» нефти, и правительство это прекрасно понимает. В «Энергетической стратегии России до 2030 года» планируется, что 40 млн. тонн от общего годового объема в 500-530 млн. будут добываться из «трудных» месторождений. Но помимо больших материальных вложений, развития новых технологий, эта сфера требует и либерализации налогообложения. Без них нефтяникам просто нерентабельно будет разрабатывать «нетрадиционные» месторождения. Убытки в таком случае несоизмеримы с доходами.

Соответствующие налоговые изменения приняты 26 июля 2013 года. Президентом Владимиром Путиным подписан закон о дифференциации налога на добычу полезных ископаемых. Устанавливается порядок определения и применения коэффициента к ставке НДПИ – от 0 до 0,8, а также коэффициента, определяющего степень выработанности конкретной залежи углеводородного сырья. Коэффициент будет нулевым для добычи из Баженовских, Абалакских, Хадумских и Доманиковых месторождений.

Норма будет действительна в течение 180 налоговых периодов. Говоря более простым языком, компании, которые добывают «трудноизвлекаемую» нефть, не будут платить налог в течение 15 лет. При добыче нефти из залежей с эффективной нефтенасыщенной толщиной пласта не более 10 метров планируется применять коэффициент 0,2; при толщине пласта более 10 метров – 0,4. Для залежей Тюменской свиты устанавливается коэффициент 0,8. В остальных случаях коэффициент НДПИ будет равен 1.