Факторный анализ в statistica. Факторный и дисперсионный анализ в Excel с автоматизацией подсчетов. Аналогично можно задать более сложные контрасты или воспользоваться одним из заранее заданных наборов

Общие определения

Целью дисперсионного анализа (ANOVA – Analysis of Variation) является проверка значимости различия между средними в разных группах с помощью сравнения дисперсий этих групп. Разделение общей дисперсии на несколько источников (связанных с различными эффектами в плане), позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью.

Проверяемая гипотеза состоит в том, что различия между группами нет. При истинности нулевой гипотезы, оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. При ложности - значимо отклоняться.

В целом дисперсионный анализ может быть разделён на несколько видов:

  • одномерный (одна зависимая переменная) и многомерный (несколько зависимых переменных);

  • однофакторный (одна группирующая переменная) и многофакторный (несколько группирующих переменных) с возможным взаимодействием между факторами;

  • с простыми измерениями (зависимая переменная измеряется лишь один раз) и с повторными (зависимая переменная измеряется несколько раз).

В STATISITICA реализованы все известные модели дисперсионного анализа.

В STATISITICA дисперсионный анализ можно провести с помощью модуля Дисперсионный анализ в блоке STATISITICA Base (Анализ -> Дисперсионный анализ(ДА)) . Для построения модели специального вида используется полная версия Дисперсионного анализа, представленная в модулях Общие линейные модели , Обобщённые линейные и нелинейные модели , Общие регрессионные модели , Общие модели частных наименьших квадратов из блока Углубленные методы анализа (STATISTICA Advanced Linear/Non-Linear Models ).

в начало

Пошаговый пример в STATISTICA

Мы будем иллюстрировать возможности дисперсионного анализа в STATISITICA , рассматривая пошаговый модельный пример.

Исходный файл данных описывает совокупность людей с разным уровнем дохода, образования, возраста и пола. Рассмотрим, как влияют уровень образования, возраст и пол на уровень дохода.

По возрасту все люди были разделены на четыре группы:

  • до 30 лет;

  • от 31 до 40 лет;

  • от 41 до 50 лет;

  • от 51 года.

По уровню образования произошло деление на 5 групп:

  • незаконченное среднее;

  • среднее;

  • среднее профессиональное;

  • незаконченное высшее;

  • высшее.

Так как данные модельные, то полученные результаты будут носить в основном качественный характер и иллюстрировать способ проведения анализа.

Шаг 1. Выбор анализа

Выберем дисперсионный анализ из меню: Анализ -> Углубленные методы анализа -> Общие линейные модели .

Рис. 1. Выбор дисперсионного анализа из выпадающего меню STATISTICA

Далее откроется окно, в котором представлены различные виды анализа. Выбираем Вид анализа Факторный Дисперсионный анализ .


Рис. 2. Выбор вида анализа

В этом окне также можете выбрать способ построения модели: диалоговый режим или использовать мастер анализа. Выберем диалоговый режим.

Шаг 2. Задание переменных

Из открытого файла данных выберем переменные для анализа, щелкните кнопку Переменные , выберете:

Доход – зависимая переменная,

Уровень образования , Пол и Возраст – категориальные факторы (предикторы).

Заметим, что Коды факторов в этом простом примере можно не задавать. При нажатии на кнопку OK , STATISTICA задаст их автоматически.


Рис. 3. Задание переменных

Шаг 3. Изменение опций

Обратимся к вкладке Опции в окне GLM Факторный ДА .


Рис. 4. Вкладка Опции

В этом диалоговом окне вы можете:

  • выбрать случайные факторы;

  • задать тип параметризации модели;

  • указать тип сумм квадратов (SS), имеется 6 различных сумм квадратов (SS);

  • включить проведение кросс-проверки.

Оставим все установки по умолчанию (этого достаточно в большинстве случаев) и нажмём кнопку ОК .

Шаг 4. Анализ результатов – просмотр всех эффектов

Результаты анализа можно посмотреть в окне Результаты с помощью вкладок и группы кнопок. Рассмотрим, например, вкладку Итоги .


Рис. 5. Окно анализа результатов: вкладка Итоги

С этой вкладки можно получить доступ ко всем основным результатам. Воспользуйтесь остальными вкладками для получения дополнительных результатов. Кнопка Меньше позволяет изменить диалоговое окно результатов, удалив вкладки, которые, как правило, не используются.

При нажатии кнопки Проверить все эффекты получаем следующую таблицу.


Рис. 6. Таблица всех эффектов

Эта таблица выводит основные результаты анализа: суммы квадратов, степени свободы, значения F-критерия, уровни значимости.

Для удобства исследования значимые эффекты (p<.05) выделены красным цветом. Два главных эффекта (Уровень образования и Возраст ) и некоторые взаимодействия в данном примере являются значимыми (p<.05).

Шаг 5. Анализ результатов – просмотр заданных эффектов

Чтобы посмотреть, каким образом средний уровень дохода различается по категориям, удобнее всего воспользоваться графическими средствами. При нажатии на кнопку Все эффекты/графики появится следующее диалоговое окно.


Рис. 7. Окно Таблица всех эффектов

В окне перечислены все рассматриваемые эффекты. Статистически значимые эффекты помечены *.

Например, выберем эффект Возраст , в группе Отображать укажем Таблицу и нажмём ОК . Появится таблица, в которой для каждого уровня эффекта приведено среднее значение зависимой переменной (Доход) , величина стандартной ошибки и границы доверительных пределов.


Рис. 8. Таблица с описательными статистиками по уровням переменной Возраст

Эту таблицу удобно представить в графическом виде. Для этого выберем График в группе Отображать диалогового окна Таблица всех эффектов и нажмём ОК . Появится соответствующий график.


Рис. 9. График зависимости среднего дохода от возраста

Из графика ясно видно, что между группами людей разного возраста есть разница в уровне дохода. Чем выше возраст, тем больше доход.

Аналогичные операции проведём для взаимодействия нескольких факторов. В диалоговом окне выберем Пол *Возраст и нажмём ОК .


Рис. 10. График зависимости среднего дохода от пола и возраста

Получен неожиданный результат: для опрошенных людей в возрасте до 50 лет уровень дохода растёт с возрастом и не зависит от пола; для опрошенных людей старше 50 лет женщины имеют значимо больший доход, чем мужчины.

Стоит построить полученный график в разрезе уровня образования. Возможно, такая закономерность нарушается в некоторых категориях или, наоборот, носит универсальный характер. Для этого выберем Уровень образования * Пол * Возраст и нажмём ОК .


Рис. 11. График зависимости среднего дохода от пола, возраста, уровня образования

Видим, что полученная зависимость не характерна для среднего и среднего профессионального образования. В остальных случаях она справедлива.

Шаг 6. Анализ результатов – оценка качества модели

Выше в основном использовались графические средства дисперсионного анализа. Рассмотрим некоторые другие полезные результаты, которые можно получить.

Во-первых, интересно посмотреть, какую долю изменчивости объясняют рассматриваемые факторы и их взаимодействия. Для этого во вкладке Итоги нажмём на кнопку Общая R модели . Появится следующая таблица.

Рис. 12. Таблица SS модели и SS остатков

Число в столбце Множеств. R2 – квадрат множественного коэффициента корреляции; оно показывает, какую долю изменчивости объясняет построенная модель. В нашем случае R2 = 0.195, что говорит о невысоком качестве модели. В самом деле, на уровень дохода влияют не только факторы, внесённые в модель.

Шаг 7. Анализ результатов – анализ контрастов

Часто требуется не только установить различие в среднем значении зависимой переменной для разных категорий, но и установить величину различия для заданных категорий. Для этого следует исследовать контрасты.

Выше было показано, что уровень дохода для мужчин и женщин значимо отличается для возраста от 51, в остальных случаях различие не значимо. Выведем разницу в уровне дохода для мужчин и женщин в возрасте выше 51 года и между 40 и 50 годами.

Для этого перейдём во вкладку Контрасты и выставим все значения следующим образом.


Рис. 13. Вкладка Контрасты

При нажатии кнопки Вычислить появится несколько таблиц. Нас интересует таблица с оценками контрастов.


Рис. 14. Таблица Оценки контрастов

Можно сделать следующие выводы:

  • для мужчин и женщин старше 51 года разница в уровне дохода составляет 48,7 тыс. долл. Разница значима;

  • для мужчин и женщин в возрасте от 41 до 50 лет разница в уровне дохода составляет 1,73 тыс. долл. Разница не значима.

Аналогично можно задать более сложные контрасты или воспользоваться одним из заранее заданных наборов.

Шаг 8. Дополнительные результаты

Используя остальные вкладки окна результатов можно получить следующие результаты:

  • средние значения зависимой переменной для выбранного эффекта – вкладка Средние ;

  • проверка апостериорных критериев (post hoc) – вкладка Апостериорные ;

  • проверка сделанных для проведения дисперсионного анализа предположений – вкладка Предположения ;

  • построение профилей отклика/желательности – вкладка Профили ;

  • анализ остатков – вкладка Остатки ;

  • вывод матриц, используемых в анализе – вкладка Матрицы ;

  • Факторный анализ со статистической точки зрения связан с поиском новых признаков, характеризующих объекты наблюдения на основе имеющейся информации, которая содержится в измеренных значениях k исходных признаков. Всю информацию об п объектах наблюдения можно представить в виде матрицыили прямоугольной таблицы "объект – признак" (табл. 5.6).

    Таблица 5.6

    Таблица "объект (i) – признак (/)"

    Для дальнейшего анализа удобнее использовать матрицу наблюдаемых стандартизованных признаков, которые тоже относятся к категории измеримых, как рассчитанных непосредственно по результатам произведенных наблюдений

    Стандартизация производится в соответствии с заменой (5.3), но обычно неизвестные математические ожидания и дисперсии n"j заменяются их выборочными аналогами: выборочной средней

    и несмещенной оценкой дисперсии

    либо асимптотически несмещенной оценкой дисперсии

    Средние значения стандартизованных переменных равны нулю (), а дисперсии – единице ().

    Связь новых переменных с наблюдаемыми признаками в факторном анализе аналогична регрессионной, но с тем существенным отличием, что эти новые объясняющие переменные, или факторы, неизвестны и нуждаются в идентификации. В моделях факторного анализа используются общие и индивидуальные факторы. Общие факторы связаны значимыми коэффициентами более чем с одной измеримой переменной. Каждый из индивидуальных факторов v. связан только с однойу-й измеримой переменной. При этом обычно предполагается, что индивидуальные факторы некоррелированы между собой и с общими факторами. Кроме того, для удобства факторы выбираются как стандартизованные:

    Второй индекс переменныхобозначает номер объекта наблюдения i - 1,2,..., п. Первый индекс j = 1,2,...,k характеризует номер исходного признака Zjj и соответствующего ему индивидуального эффекта vjY, а для g lt первый индекс / = 1,2,..., от обозначает номер общего фактора.

    Коэффициенты при общих факторах можно свести в матрицу

    а коэффициенты при индивидуальных факторах для дальнейшего матричного представления модели будут диагональными элементами в диагональной матрице

    Включающая нагрузки всех факторов общая матрица коэффициентов, или матрица факторного отображения, будет представлять собой результат объединения элементов обеих матриц:

    Матрица значений общих факторов представляет собой матрицу размерности т х п, где т < k:

    Матрица значений индивидуальных факторов имеет размерность kxn:

    Общая матрица значений факторов может быть образована как результат объединения матриц общих и индивидуальных факторов:

    С учетом введенных обозначений модель факторного анализа в матричной форме может быть представлена в виде

    Модель факторного анализа с учетом неполного содержания исходной информации об объектах исследования в новой системе координат меньшей размерности (m < k) неизбежно будет содержать помимо общности в виде информации об объектах в системе координат общих факторов и специфичность, представляемую в виде значений характерных факторов. В то же время с учетом случайности выборки и погрешности измерения нормированное наблюдаемое значение содержит истинное значение, индивидуальную особенность Indjj каждого объекта и ошибку измерения е":

    В рамках статистического подхода под истинным значением понимается математическое ожидание признака, вторая и третья составляющие характеризуют отклонение отдельного показателя на данном объекте от среднего. Если первая составляющая является общей статистической характеристикой совокупности объектов исследования, то вторая и третья компоненты являются носителями особенностей, присущих данному объекту и методу измерения. В процессе управления важнейшим моментом являются знание и умение учитывать индивидуальные черты отдельных объектов исследования.

    Характеристика вариативности – дисперсия – для нормированного значения наблюдаемого признака может быть представлена в следующем виде:

    (5.14)

    Ошибка измерения обычно оказывается значительно меньше вариативной компоненты, поэтому их часто объединяют . Однако поскольку вариативная составляющая и ошибки измерения возникают независимо друг от друга, то их рассматривают как некоррелированные.

    Рассмотрим слагаемые, содержащие сомножитель, величина которого является дисперсией произвольного общего факторапосле нормировки:

    Величина дисперсии нормированного общего фактора равна единице:

    Рассмотрим в формуле (5.14) слагаемые, содержащие сомножитель . Это коэффициент корреляции между двумя общими факторами, т.е.

    После введения обозначения для коэффициента корреляции общих и индивидуальных эффектов

    выражение (5.14) можно представить в виде

    Из этого представления следует, что

    Так как характерный фактор присущ только данной)-й переменной и некоррелирован с общими факторами, тои выражение (5.15) можно упростить:

    Дальнейшее упрощение может быть получено для некоррелированных общих факторов, когда и, тогда

    В этом случае дисперсия признакаравна сумме относительных вкладов в дисперсию этого признака каждого из т общих и одного характерного фактора.

    Компонент общей дисперсииназывается общностью показателя Zj, т.е. суммой относительных вкладов всех т общих факторов в дисперсию признака Zj. Вклад в дисперсию признака z ) характерного фактора Vj, или характерность, определяется слагаемым bj. В свою очередь дисперсия характерного фактора состоит из двух составляющих: связанной со спецификой параметра Sj и связанной с ошибками измерений Е у

    Если факторы специфичности Sj и ошибки Ej некоррелированы между собой, то модель факторного анализа примет вид

    Вклад характерного фактора в дисперсию признака может быть представлен следующим образом:

    Если выделить из дисперсии признака составляющую ошибки, то получим характеристику, называемую надежностью:

    Вклад фактора /,. в суммарную дисперсию всех признаков определяется соответствующей суммой квадратов коэффициентов при нормированных значениях:

    Вклад всех общих факторов в суммарную дисперсию признаков рассчитывается как сумма вкладов всех факторов:

    Отношение этой суммы к размерности исходного признакового пространства

    называют полнотой факторизации.

    Исходные данные матрицы X (или Z) позволяют получить матрицу парных коэффициентов корреляции R. Для воспроизведения всех связей переменных в корреляционной матрице может быть использована матрица К = (А В):

    Введем обозначение для первого слагаемого – редуцированной корреляционной матрицы: /¾ = ЛЛ Т.

    Матрицу ВВ" вследствие того, что В является диагональной матрицей, можно представить в виде ВВ Т = В 2.

    Таким образом, матрица парных коэффициентов корреляции исходных показателей может быть представлена в виде суммы:

    В то время как R является корреляционной матрицей с единицами на главной диагонали, матрица R h представляет собой корреляционную матрицу с общностями на главной диагонали.

    Для стандартизованных исходных признаков 7 корреляционная матрица R тождественна ковариационной матрице 2. Если рассматривать данные как выборку из генеральной совокупности, то определенная по выборочным данным матрица 2 (или К) является оценкой истинной ковариационной (корреляционной) матрицы. Несмещенная оценка может быть получена в виде

    Рассчитаем редуцированную корреляционную матрицу с учетом равенства (5.4), используя для восстановления нормированных исходных признаков только общие факторы:

    Выражение, стоящее между А и А т, является корреляционной матрицей стохастических связей между общими факторами

    При этом общее выражение для редуцированной корреляционной матрицы примет вид

    Если общие факторы некоррелированы между собой, то матрица С будет единичной, и при этом

    Два последних выражения представляют собой фундаментальную теорему факторного анализа.

    Пример 5.2

    По данным о численности (дг,) и фонде заработной платы (,v2) пяти строительных организаций проведем факторный анализ методом главных компонент. Дано:

    Решение

    Рассчитаем выборочные характеристики переменных т, и Выборочный коэффициент корреляции равен

    Преобразуем матрицу X в матрицу нормированных значений Z с элементами , где

    Матрица парных коэффициентов корреляции имеет вид

    Для определения собственных значений матрицы R рассмотрим характеристическое уравнение

    Отсюда следует, что

    Так как по условию компонентного анализа, то, где,

    – соответственно дисперсии и вклад первой и второй главных компонент в суммарную дисперсию, равную

    Относительный вклад компонент в суммарную дисперсию равен Таким образом,

    Определим матрицу собственных векторов из уравнения Собственный векторнаходим из условия

    Подставляя полученные значения, получим

    откудаили

    Нормированный собственный вектор, соответствующий, равен

    Собственный вектор V 2 найдем, решив уравнение

    откуда.или

    Нормированный собственный вектор, соответствующий Х2. равен

    тогда нормированная матрица собственных векторов имеет вид

    Матрицу факторных нагрузок найдем по формуле . Подставив полученные значения, получим

    Матрицу факторных нагрузок используют для интерпретации главных компонент, так как элементы матрицы а }Х) = характеризуют тесноту связи между Хгм признаком и /0-й главной компонентой. В нашем примере первая главная компонента тесно связана с показателями.г, и.г2, а /, характеризует размер предприятия.

    Матрицу значений главных компонент F можно получить по формуле

    Предварительно найдем обратную матрицу. Так как то

    Тогда

    Как уже отмечалось, матрица F. которую мы получили, характеризует пять строительных организаций в пространстве главных компонент. Ее можно использовать в задачах классификации и регрессионного анализа. Например, классификация организации но первой главной компоненте /, характеризующей размер предприятий, позволяет ранжировать их в порядке возрастания следующим образом: 4; 1:2: 5: 3. Значения главных компонент определены с точностью до знака, поэтому они могли бы оказаться противоположными для всех объектов, и проведенная ранжировка характеризовала бы размеры предприятий в порядке уменьшения. Определить правильность выбранного знака можно по значениям исходных показателей для крайних проранжированных объектов.

    Пример 5.3

    На основе информации о значениях семи исходных признаков получены два общих некоррелированных фактора. По известной матрице весовых коэффициентов двух общих факторов Л требуется воспроизвести редуцированную корреляционную матрицу R h, определить редуцированную корреляционную матрицу для случая использования только первого общего фактора R 1 и только второго общего фактора R" при условии, что дисперсия первого общего фактора больше, чем дисперсия второго.

    Решение

    1. Получим матрицу R h.

    Произведем умножение матрицы А на А т и получим редуцированную корреляционную матрицу /?л. т.е. восстановленную из модели факторного анализа при условии, что факторы некоррелированы:

    В матрице R /t на главной диагонали стоят дисперсии, представляющие общности, суммарный вклад в переменные имеющихся двух общих факторов.

    2. Получим матрицу R 1.

    Зададимся вопросом: что было бы, если бы мы пренебрегли вторым общим фактором и провели интерпретацию на основании только первого общего фактора? Какая редуцированная корреляционная матрица R 1 была бы воспроизведена?

    Воспроизведенная, или редуцированная, по первому общему фактору матрица восстанавливает связи, объясняемые первым собственным вектором матрицы А. В матрице Д"на главной диагонали стоят вклады в дисперсию первого столбца фактора соответствующих переменных. Они совпадают с вкладами признаков в дисперсию первого фактора aj t.

    Как первая, так и вторая воспроизведенные матрицы не отражают всей информации процесса. При этом вторая матрица R" отражает меньше информации, чем первая R 1. Это объясняется тем, что R 1 воспроизводит связи, соответствующие дисперсии первого фактора, которая больше дисперсии второго фактора. Однако и более полная матрица R/, не производит связей, определяемых характерными факторами, так как она объединяет весовые коэффициенты только общих факторов. Необъясненная же часть информации матрицами R/, и А приходится на характерные факторы.

    При использовании факторного анализа исследователь сталкивается с различными проблемами. Наиболее часто они возникают в процессе содержательной интерпретации результатов анализа. Многие из проблем носят частный характер, не относящийся непосредственно к факторному анализу и присущий определенному классу задач, например наличие плохо обусловленных матриц парных коэффициентов корреляций, присущее классу экономико-статистических задач.

    Среди проблем проведения факторного анализа можно выделить проблемы робастности, общности, выбора факторов, вращения факторов и оценки их значений и содержательной интерпретации, а также проблему построения динамических моделей.

    В классическом факторном анализе на основе исходной таблицы "объект – признак" (см. табл. 5.6) формируется матрица нормированных значений исходных признаков. Опыт решения практических задач показывает, что наличие грубых ошибок данных при многомерном анализе может привести к дальнейшим трудностям. Малую чувствительность к наличию грубых ошибок данных обеспечивают робастные оценки параметров: среднего значения и дисперсии или среднего квадратического отклонения.

    Рассчитываемая матрица парных коэффициентов корреляции является симметрической матрицей порядка к. Она является диагональной, и на се главной диагонали стоят единицы, соответствующие дисперсиям исходных нормированных показателей. Данная матрица R является исходной для проведения компонентного анализа. Для факторного анализа необходимо получить редуцированную матрицу /?/,.

    Редуцированная корреляционная матрица /¾ служит основной для факторного анализа. Она также является симметрической порядка k, но на ее главной диагонали вместо единиц стоят общности hj. На основе этой матрицы рассчитывается матрица весовых коэффициентов Л. Ее элементы являются характеристиками стохастической связи между исходными признаками и общими факторами.

    При переходе от редуцированной корреляционной матрицы к матрице весовых коэффициентов необходимо решить проблему нахождения факторов, включающую вопросы определения числа извлекаемых общих факторов и их вида. Значения весовых коэффициентов являются координатами признаков на новых осях координат. Этими координатными осями являются общие факторы. Чаще всего для их нахождения используется метод главных компонент.

    Задача воспроизведения матрицы /?>, по матрице А не имеет однозначного решения. Выбор одной из возможных матриц является составной частью решения задачи вращения координатных осей.

    После получения новой интегральной системы измерения – общих факторов – можно оценить значения индивидуальных факторов для каждого объекта исследования.

    Сопоставление факторных решений в течение длительного периода обеспечивается динамическим моделированием, позволяющим выявить те признаки, влияние которых в будущем будет снижаться или, наоборот, возрастать.

    Итак, из условия представленной выше задачи следует, что у нас есть массив данных, состоящий из 24 независимых переменных (утверждений), в различных аспектах описывающих текущее состояние авиакомпании X на международном рынке авиаперевозок. Основной задачей проводимого факторного анализа является группировка схожих по смыслу утверждений в макрокатегории с целью сократить число переменных и оптимизировать структуру данных.

    При помощи меню Analyze >Data Reduction > Factor вызовите окно Factor Analysis. Перенесите из левого списка в правый переменные для анализа (ql-q24), как показано на рис. 5.32. Поле Selection Variable позволяет выбрать переменную, в разрезе которой будет проводиться анализ (например, класс полета). В нашем случае оставьте это поле Пустым.

    Щелкните на кнопке Descriptives и в открывшемся диалоговом окне (рис. 5.33) выберите пункт КМО and Barlett"s test of sphericity. Это позволит определить, насколько имеющиеся данные пригодны для факторного анализа. Окно Descriptives позволяет вывести и другие необходимые описательные статистики. Однако в большинстве примеров из маркетинговых исследований эти возможности, как правило, не используются.

    Рис. 5.32.

    Рис. 5.33.

    Закройте окно Descriptives, щелкнув на кнопке Continue. Далее откройте окно Extraction (рис. 5.34), щелкнув на соответствующей кнопке в главном диалоговом окне Factor Analysis. Это окно предназначено для выбора метода формирования факторной модели; выполните в нем следующие действия.

    Рис. 5.34.

    Во-первых, в поле Method выберите метод извлечения (формирования) факторов. Общая рекомендация по выбору метода состоит в следующем. Необходимо выбирать тот метод извлечения факторов, который позволяет однозначно классифицировать как можно больше переменных. Таким образом, основные соображения здесь -- число классифицированных факторов и однозначность классификации (то есть каждая переменная должна принадлежать только одному фактору). Как вы увидите ниже, установленный по умолчанию в SPSS метод Principal components в нашем случае позволяет однозначно классифицировать 22 переменные из 24 имеющихся (92 %), что является весьма хорошим показателем. На основании имеющегося опыта автор может утверждать, что хорошим результатом факторного анализа является доля однозначно классифицированных переменных не менее 90 %. Выберите метод Principal components. Данный метод является наиболее подходящим для решения большинства задач маркетинговых исследований при помощи факторного анализа.

    Во-вторых, укажите количество образуемых факторов (группа Extract). По умолчанию установлен метод определения количества извлекаемых факторов на основании значений характеристических чисел (Eigenvalues over). He вдаваясь в статистические тонкости, отметим, что характеристические числа используются SPSS для определения количественного и качественного состава извлекаемых факторов. При предустановленном значении данного показателя, равном 1, количество образуемых факторов будет равно количеству переменных, значение характеристических чисел для которых больше или равно 1.

    Также существует возможность вручную указать программе, сколько факторов необходимо извлекать (Number of factors). Эта возможность предусмотрена в SPSS для того, чтобы при слишком большом количестве переменных с характеристическим числом больше 1 вручную сократить число факторов. Большое число факторов трудно интерпретировать, поэтому если методом характеристических чисел не удается извлечь приемлемое для интерпретации число факторов (чем меньше, тем лучше), следует самостоятельно указать программе число факторов. Эта задача решается аналитиком в каждом конкретном случае индивидуально. В качестве одного из вариантов решения можно рекомендовать увеличить число eigenvalue с предустановленного значения 1, скажем, до 1,5 или более. Это поможет, если получено большое число факторов с характеристическим числом, приблизительно равным 1, и несколько (2-3 и более) факторов -- с характеристическим числом более 1,5 или другого значения. Также при ручном определении количества факторов аналитик может принять релевантное решение, основываясь на своем опыте или на каких-либо иных предположениях. И наконец, необходимо отметить, что при ручном указании числа извлекаемых факторов иногда количество однозначно классифицированных переменных оказывается меньше, чем при методе экстракции по величине характеристических чисел. Однако данный негативный момент нивелируется возросшей наглядностью результатов факторного анализа -- ведь это позволяет освободиться от факторов, в которых нет переменных со значимым коэффициентом корреляции (в нашем случае 0,5).

    Закройте диалоговое окно Extraction, щелкнув на кнопке Continue. Выберите тип ротации матрицы коэффициентов (кнопка Rotation в главном диалоговом окне Factor Analysis). Ротация коэффициентной матрицы производится для того, чтобы максимально приблизить факторную модель к идеалу: возможности однозначно классифицировать все переменные. В диалоговом окне Rotation (рис. 5.35) выберите конкретный метод ротации. В большинстве случаев наиболее приемлемым вариантом является метод Varimax. Он облегчает интерпретацию факторов, минимизируя количество переменных с высокими факторными нагрузками. Выберите этот тип ротации и закройте диалоговое окно, щелкнув на кнопке Continue.

    Рис. 5.35.

    Далее откройте диалоговое окно Factor Scores (рис. 5.36), щелкнув на кнопке Scores. Это окно служит для создания в исходном файле данных новых переменных, которые в дальнейшем позволят отнести каждого респондента к определенной группе (фактору). Число вновь создаваемых переменных равно числу извлеченных факторов. Ниже мы покажем, каким образом использовать данные переменные. Выберите в диалоговом окне Factor Scores параметр Save as variables, а в качестве метода определения значений для этих новых переменных -- регрессионную модель Regression. После этого закройте диалоговое окно, щелкнув на кнопке Continue.

    Рис. 5.36.

    Последним этапом перед запуском процедуры факторного анализа является выбор некоторых дополнительных параметров (кнопка Options). В открывшемся диалоговом окне (рис. 5.37) выберите два пункта: Sorted by size и Suppress absolute values less than. Первая опция позволяет вывести переменные, входящие в каждый фактор, в порядке убывания их факторных коэффициентов (величины вклада переменной в формирование фактора). Вторая оказывается весьма полезна, так как облегчает задачу однозначной интерпретации полученных факторов. Указанное в соответствующем поле значение данного параметра (в нашем случае 0,5) отсекает переменные с факторными коэффициентами менее данного значения. Это позволяет упростить ротированную матрицу факторов, поскольку из нее исчезают незначимые переменные, входящие в каждый извлеченный фактор. Если вы не задействуете данный параметр, для каждой переменной будет отображен факторный коэффициент по каждому фактору, что излишне перегрузит факторную модель и затруднит ее восприятие исследователями.

    Параметр Suppress absolute values less than вводится, чтобы облегчить практическую интерпретацию результатов факторного анализа. Так как факторные коэффициенты в результирующей ротированной матрице коэффициентов являются коэффициентами корреляции между соответствующими переменными и факторами, в большинстве практических случаев целесообразно устанавливать начальное значение отсечения незначимых переменных на уровне 0,5. Если в результате факторного анализа окажется, что число классифицированных переменных менее приемлемого (например, если структура данных не вполне подходит для факторного анализа; см. ниже), можно пересчитать факторную модель с меньшим значением отсечения (например, 0,4). В обратной ситуации, если переменная входит в несколько факторов, можно предложить повысить уровень экстракции с 0,5 до 0,6. Это позволит устранить переменные, входящие сразу в несколько факторов, увеличив практическую пригодность результатов факторного анализа.

    Итак, указав все необходимые параметры в окне Options, закройте его (кнопка Continue) и запустите процедуру факторного анализа при помощи щелчка на кнопке 0К в главном диалоговом окне Factor Analysis.

    Рис. 5.37.

    После того как программа произведет все необходимые расчеты, откроется окно SPSS Viewer с результатами построения факторной модели. Первое, что нас интересует, -- это пригодность имеющихся данных для факторного анализа в целом. Посмотрим на таблицу КМО and Barlett"s Test (рис. 5.38). В ней есть два интересующих нас показателя: тест КМО и значимость теста Barlett. Результаты теста КМО позволяют сделать вывод относительно общей пригодности имеющихся данных для факторного анализа, то есть насколько хорошо построенная факторная модель описывает структуру ответов респондентов на анализируемые вопросы. Результаты данного теста варьируются в интервале от 0 (факторная модель абсолютно неприменима) до 1 (факторная модель идеально описывает структуру данных). Факторный анализ следует считать пригодным, если КМО находится в пределах от 0,5 до 1. В нашем случае этот показатель равен 0,9, что является весьма хорошим результатом.

    Barlett"s test of sphericity проверяет гипотезу о том, что переменные, участвующие в факторном анализе, некоррелированы между собой. Если данный тест дает положительный результат (переменные некоррелированы), факторный анализ следует признать непригодным использовать другие статистические методы (например, кластерный анализ). Статистикой, определяющей пригодность факторного анализа по тесту Barlett, является значимость (строка Sig.). При приемлемом уровне

    значимости (ниже 0,05) факторный анализ считается пригодным для анализа исследуемой выборочной совокупности. В нашем случае рассматриваемый тест показывает весьма низкую значимость (менее 0,001), из чего следует вывод о применимости факторного анализа.

    Итак, на основании тестов КМО и Barlett мы пришли к выводу, что имеющиеся у нас данные практически идеально подходят для исследования при помощи факторного анализа.

    Рис. 5.38.

    Следующим шагом в интерпретации результатов факторного анализа является рассмотрение результирующей ротированной матрицы факторных коэффициентов: таблицы Rotated Component Matrix (рис. 5.39). Данная таблица является основным результатом факторного анализа. В ней отражаются результаты классификации переменных по факторам. В нашем случае при помощи автоматического метода определения количества факторов (на основании характеристических чисел больше 1) была построена практически приемлемая факторная модель, в которой 22 из 24 переменных удалось однозначно классифицировать по небольшому числу факторов (5). Данный результат может считаться хорошим.

    С неклассифицированными переменными можно поступить следующим образом. Необходимо просто пересчитать факторную модель, удалив в диалоговом окне Options ранее установленное значение отсечения 0,5. Далее будет построена факторная матрица (рис. 5.40), в которой аналитику предстоит самостоятельно определить принадлежность неклассифицированных переменных к тому или иному фактору на основании критерия наибольшего коэффициента корреляции между переменными и пятью факторами. В нашем случае вы видите, что переменная ql6 в наибольшей степени коррелирует с фактором 1 (факторный коэффициент 0,468) и, следовательно, должна быть отнесена к данному фактору, а переменная q24 -- с фактором 4 (0,474).

    После того как мы однозначно классифицировали все переменные, вернемся к таблице на рис. 5.40. Мы получили пять групп переменных (факторов), описывающих текущую конкурентную позицию авиакомпании X с пяти различных сторон. Вот эти группы.

    q2. Авиакомпания X может конкурировать с лучшими авиакомпаниями мира. q3. Я верю, что у авиакомпании X есть перспективное будущее в мировой авиации. q23. Авиакомпания X -- лучше, чем многие о ней думают. q!4. Авиакомпания X -- лицо России.

    Рис. 5.39.

    qlO. Авиакомпания Х действительно заботится о пассажирах.

    ql. Авиакомпания X обладает репутацией компаний, превосходно обслуживающей пассажиров.

    q21. Авиакомпания X -- эффективная авиакомпания. q5. Я горжусь тем, что работаю в авиакомпании X.

    ql6. Обслуживание авиакомпании X является последовательным и узнаваемым во всем мире.

    ql2. Я верю, что менеджеры высшего звена прикладывают все усилия для достижения успеха авиакомпании.

    qll. Среди сотрудников авиакомпании имеет место высокая степень удовлетворенности работой.

    q6. Внутри авиакомпании X хорошее взаимодействие между подразделениями.

    q8. Сейчас авиакомпания X быстро улучшается.

    q7. Каждый сотрудник авиакомпании прикладывает все усилия для того, чтобы обеспечить ее успех.

    q4. Я знаю, какой будет стратегия развития авиакомпании X в будущем.

    ql7. Я бы не хотел, чтобы авиакомпания X менялась.

    q20. Изменения в авиакомпании X будут позитивным моментом.

    ql8. Авиакомпании X необходимо меняться для того, чтобы использовать в полной мере имеющийся потенциал.

    q9. Нам предстоит долгий путь, прежде чем мы сможем претендовать на то, чтобы называться авиакомпанией мирового класса.

    q22. Я бы хотел, чтобы имидж авиакомпании X улучшился с точки зрения иностранных пассажиров.

    q24. Важно, чтобы люди во всем мире знали, что мы -- российская авиакомпания.

    ql9. Я думаю, что авиакомпании X необходимо представить себя в визуальном плане более современно.

    ql3. Мне нравится, как в настоящее время авиакомпания X представлена визуально широкой общественности (в плане цветовой гаммы и фирменного стиля).

    ql5. Мы выглядим «вчерашним днем» по сравнению с другими авиакомпаниями.

    Наиболее сложной задачей при проведении факторного анализа является интерпретация полученных факторов. Здесь не существует какого-либо универсального решения: в каждом конкретном случае, аналитик использует имеющийся практический опыт для того, чтобы понять, почему факторная модель относит ту или иную переменную к данному конкретному фактору. Бывают случаи (особенно при малом числе хорошо формализованных переменных), когда образованные факторы являются очевидными и различия между переменными видны невооруженным глазом. В такой ситуации можно обойтись без факторного анализа и разбить переменные на группы вручную. Однако эффективность и мощь факторного анализа проявляются в сложных и нетривиальных случаях, когда переменные нельзя заранее классифицировать, а их формулировки запутаны. Тогда большой исследовательский интерес будет вызывать классификация переменных именно на основании мнений респондентов, что позволит выявить то, как сами опрошенные поняли тот или иной вопрос.

    Когда это возможно и приемлемо для целей исследования, следует формализовать переменные до проведения факторного анализа. Это позволит аналитику заранее сделать предположения о разделении совокупности имеющихся переменных на группы. Задача исследователя при интерпретации результатов факторной матрицы в данном случае упростится, так как он уже не будет начинать «с чистого листа». Его задача сведется к проверке ранее выдвинутых гипотез о принадлежности той или иной переменной к конкретной группе.

    Иногда возникают случаи, когда переменная, отнесенная SPSS к конкретному фактору, логически никак не связана с остальными переменными, составляющими тот же фактор. Можно пересчитать факторную модель без отсечения незначимых коэффициентов (как в примере на рис. 5.40) и посмотреть, с каким еще фактором данная нелогичная переменная коррелирует практически с той же силой, как с фактором, к которому она была отнесена автоматически. Например, переменная Z имеет коэффициент корреляции с фактором 1, равный 0,505, а с фактором 2 она коррелирует с коэффициентом 0,491. SPSS автоматически относит данную переменную к тому фактору, с которым выявлена наибольшая корреляция, не учитывая при этом, что с другим фактором данная переменная коррелирует практически с той же силой. Именно в такой ситуации (при небольшой разнице в коэффициентах корреляции) можно попробовать отнести переменную Z к фактору 2, и если это окажется логичным, рассматривать ее в группе переменных из второго фактора.

    Можно вручную сократить число извлекаемых факторов, что облегчит задачу исследователя при интерпретации результатов факторного анализа. Однако необходимо иметь в виду, что такое сокращение снизит гибкость факторной модели и даже может привести к ситуации, когда переменные будут ложно разделены на неверные, с практической точки зрения, группы. Также снижение числа извлекаемых факторов неизбежно снизит и долю однозначно классифицированных факторов.

    В качестве варианта предыдущего решения можно предложить объединить два или более факторов с небольшими количествами входящих в них переменных. Такая группировка, с одной стороны, позволит снизить число интерпретируемых факторов, а с другой -- облегчит понимание малочисленных факторов.

    Если исследователь зашел в тупик и никакие средства не помогают объяснить принадлежность той или иной переменной к конкретному фактору, остается применить другую статистическую процедуру (например, кластерный анализ).

    Вернемся к нашим пяти факторам. Задача их описания и объяснения представляется не очень сложной. Так, можно заметить, что утверждения, входящие в первый фактор (q2, q3, q23, ql4, qlO, ql, q21, q5 и ql6), являются общими, то есть касаются всей авиакомпании и описывают отношение к ней со стороны авиапассажиров. Единственное исключение составила переменная q5, имеющая отношение скорее ко второму фактору. Коэффициент корреляции с фактором 2 -- 0,355 (см. рис. 5.40), что позволяет отнести его в данную группу из соображений логики. Фактор 2 (ql2, qll, q6, q8, q7 и q4) описывает отношение к авиакомпании X со стороны сотрудников. Третий фактор (ql7, q20 и ql8) описывает отношение респондентов к изменениям в авиакомпании (в него попали все утверждения, имеющие корень «мен» -- от слова «изменение»). Четвертый фактор (q9, q22 и q24) описывает отношение респондентов к имиджу авиакомпании. Наконец, пятый фактор (ql9, ql3 и ql5) объединяет утверждения, характеризующие отношение респондентов к визуальному образу авиакомпании X.

    Таким образом, мы получили пять групп утверждений, описывающих текущую конкурентную позицию компании X на международном рынке авиаперевозок. На основании проведенного интерпретационного (семантического) анализа можно присвоить данным группам (факторам) следующие определения.

    ¦ Фактор 1 характеризует общее положение авиакомпании X в глазах ее клиентов.

    ¦ Фактор 2 характеризует внутреннее состояние авиакомпании X с точки зрения ее сотрудников.

    ¦ Фактор 3 характеризует изменения, происходящие в авиакомпании X.

    ¦ Фактор 4 характеризует имидж авиакомпании X.

    ¦ Фактор 5 характеризует визуальный образ авиакомпании X.

    После того как мы успешно интерпретировали все полученные факторы, можно считать факторный анализ завершенным и удавшимся. Далее мы покажем, как можно использовать результаты факторного анализа для построения разрезов.

    Вспомним о том, что мы сохранили факторные рейтинги (то есть принадлежность каждого респондента к определенному фактору) в исходном файле данных в виде новых переменных. Эти переменные имеют имена типа: facX_Y, где X -- это номер фактора, a Y -- порядковый номер факторной модели. Если мы строили факторную модель дважды и в результате в первый раз было извлечено три фактора, а во второй -- два, имена переменных будут следующими:

    ¦ facl_l, fac2_l, fac3_l (для трех факторов из первой построенной модели);

    ¦ facl_2, fac2_2 (для двух факторов из второй модели).

    В нашем случае будет создано пять новых переменных (по числу извлеченных факторов). Эти факторные рейтинги в дальнейшем могут использоваться, например, для построения разрезов. Так, если необходимо выяснить, каким образом респонденты -- мужчины и женщины -- оценивают различные стороны деятельности авиакомпании X, это можно сделать при помощи анализа факторных рейтингов.

    Наиболее частый способ использования факторных рейтингов в дальнейших расчетах -- это ранжирование и последующее разделение вновь созданных переменных, обозначающих извлеченные факторы, на четыре квартиля (25%-проценти-ля). Такой подход позволяет создать новые переменные с порядковой шкалой, описывающие четыре уровня каждого фактора. В нашем случае для утверждений, составляющих фактор 2, такими уровнями будут: не согласен (состояние внутренних дел компании не удовлетворяет сотрудников), скорее не согласен (оценка внутренней ситуации в компании ниже среднего), скорее согласен (оценка выше среднего), согласен (оценка отлично).

    Чтобы создать переменные, по которым далее будут группироваться респонденты, вызовите меню Transform > Rank Cases. В открывшемся диалоговом окне (рис. 5.41) из левого списка выберите переменную, содержащую факторные рейтинги для фактора 2 (fac2_l), и поместите ее в поле Variables. Далее в области Assign Rank I to выберите пункт Smallest value, в нашем случае это означает, что первую группу (не согласен) составят респонденты, оценивающие состояние внутренних дел авиакомпании как плохое. Соответственно группы 2, 3 и 4 будут определены для категорий скорее не согласен, скорее согласен и согласен соответственно.

    Рис. 5.41.

    Щелкните на Rank Types > Types, отмените установленный по умолчанию параметр Rank и вместо него выберите Ntiles с предустановленным числом групп, равным 4 (рис. 5.42). Щелкните на кнопке Continue и затем в главном диалоговом окне на ОК. Данная процедура создаст в файле данных новую переменную nfac2_l (2 означает второй фактор), распределяющую респондентов на четыре группы.

    Рис. 5.42.

    Все респонденты в выборке характеризуются положительным, скорее положительным, скорее отрицательным или отрицательным отношением к текущему состоянию дел в авиакомпании X. Для повышения наглядности рекомендуется присвоить метки каждому из выделенных четырех уровней; можно переименовать и саму переменную. Теперь вы можете проводить перекрестный анализ при помощи новой порядковой переменной, а также строить другие статистические модели, предусмотренные в SPSS. Ниже будет показано, как использовать результаты построения факторной модели в кластерном анализе.

    Для иллюстрации возможностей практического использования новой переменной проведем перекрестный анализ влияния пола респондентов на их оценку текущего состояния дел в авиакомпании X (рис. 5.43). Как следует из представленной таблицы, респонденты-мужчины в целом склонны ставить более низкие оценки рассматриваемому параметру авиакомпании по сравнению с женщинами. Так, в структуре оценок очень плохо, плохо и удовлетворительно доля мужчин преобладает; в оценках очень хорошо, напротив, преобладают женщины. При переходе в каждую следующую (более высокую) категорию оценок доля мужчин равномерно убывает, а доля женщин, соответственно, возрастает. Тест %2 показывает, что выявленная зависимость является статистически значимой.

    Рис. 5.43. Перекрестное распределение: влияние пола респондентов на их оценку текущего состояния дел в авиакомпании X

    Министерство сельского хозяйства РФ

    Федеральное государственное образовательное учреждение

    Высшего профессионального образования

    Государственный университет по землеустройству

    Кафедра экономической теории и менеджмента

    Курсовая работа

    По дисциплине «Анализ и диагностика финансовой деятельности предприятия»

    На тему: «Факторный анализ элементов производства».

    Выполнила:

    студентка 34-э группы

    Максимова Н.С.

    Проверила:

    Чиркова Л.Л.

    Москва 2009 г.

    Введение…………………………………………………………………………….....3

    Глава 1. Факторный анализ элементов производства…………………………………………………………………………..4

    1.1. Факторный анализ, его виды и задачи…………………………………………………………………………………..4

    1.2 . Детерминированный факторный анализ. Требования к моделированию …………………………………………………………………………..8

    1.3 Методы и виды детерминированного факторного анализа…………………..10

    Глава 2 . Практическая часть………………………………………………………..14

    2.1. Способы измерения влияния факторов в анализе хозяйственной деятельности………………………………………………………………………….14

    2.2. Факторный анализ финансового состояния автотранспортного предприятия ОАО “Предприятие 1564”……………………………………………….….20

    Заключение…………………………………………………………………….……..24

    Список используемой литературы…………………………………………….........25

    Приложения…………………………………………………………………………..26

    Введение

    Факторный анализ - совокупность методов многомерного статистического анализа, применяемых для изучения взаимосвязей между значениями переменных. С помощью факторного анализа возможно выявление скрытых (латентных) переменных факторов, отвечающих за наличие линейных статистических связей (корреляций) между наблюдаемыми переменными.

    Цели факторного анализа:

    • сокращение числа переменных;
    • определение взаимосвязей между переменными, их классификация.

    Факторный анализ возник в начале XX века, первоначально разрабатывался в задачах психологии. Большой вклад в развитие факторного анализа внесли Чарльз Спирмэн, Рэймонд Кеттел.

    Методы факторного анализа:

    • метод главных компонент
    • корреляционный анализ
    • метод максимального правдоподобия

    Факторный анализ – определение влияния факторов на результат - является одним из сильнейших методических решений в анализе хозяйственной деятельности компаний для принятия решений. Для руководителей - дополнительный аргумент, дополнительный "угол зрения".

    Однако на практике он применяется редко в силу нескольких причин:

    1) реализация этого метода требует некоторых усилий и специфического инструмента (программного продукта);

    2) у компаний есть другие «вечные» первоочередные задачи.

    Глава 1. Факторный анализ элементов производства

    1.1 Факторный анализ, его виды и задачи.

    Под факторным анализом понимается методика комплексного и системного изучения и измерения воздействия факторов на величину результативных показателей.

    В общем случае можно выделить следующие основные этапы факторного анализа:

    1. Постановка цели анализа.

    2. Отбор факторов, определяющих исследуемые результативные показатели.

    3. Классификация и систематизация факторов с целью обеспечения комплексного и системного подхода к исследованию их влияния на результаты хозяйственной деятельности.

    4. Определение формы зависимости между факторами и результативным показателем.

    5. Моделирование взаимосвязей между результативным и факторными показателями.

    6. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.

    7. Работа с факторной моделью (практическое ее использование для управления экономическими процессами).

    Отбор факторов для анализа того или иного показателя осуществляется на основе теоретических и практических знаний в конкретной отрасли. При этом обычно исходят из принципа: чем больший комплекс факторов исследуется, тем точнее будут результаты анализа. Вместе с тем необходимо иметь в виду, что если этот комплекс факторов рассматривается как механическая сумма, без учета их взаимодействия, без выделения главных, определяющих, то выводы могут быть ошибочными. В анализе хозяйственной деятельности (АХД) взаимосвязанное исследование влияния факторов на величину результативных показателей достигается с помощью их систематизации, что является одним из основных методологических вопросов этой науки.

    Важным методологическим вопросом в факторном анализе является определение формы зависимости между факторами и результативными показателями: функциональная она или стохастическая, прямая или обратная, прямолинейная или криволинейная. Здесь используется теоретический и практический опыт, а также способы сравнения параллельных и динамичных рядов, аналитических группировок исходной информации, графический и др.

    Моделирование экономических показателей также представляет собой сложную проблему в факторном анализе, решение которой требует специальных знаний и навыков.

    Расчет влияния факторов - главный методологический аспект в АХД. Для определения влияния факторов на конечные показатели используется множество способов, которые будут подробнее рассмотрены ниже.

    Последний этап факторного анализа - практическое использование факторной модели для подсчета резервов прироста результативного показателя, для планирования и прогнозирования его величины при изменении ситуации.

    В зависимости от типа факторной модели различают два основных вида факторного анализа - детерминированный и стохастический.

    Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т. е. когда результативный показатель факторной модели представлен в виде произведения, частного или алгебраической суммы факторов.

    Данный вид факторного анализа наиболее распространен, поскольку, будучи достаточно простым в применении (по сравнению со стохастическим анализом), позволяет осознать логику действия основных факторов развития предприятия, количественно оценить их влияние, понять, какие факторы и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства. Подробно детерминированный факторный анализ мы рассмотрим в отдельной главе.

    Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель. Например, производительность труда при одном и том же уровне фондовооруженности может быть неодинаковой на разных предприятиях. Это зависит от оптимальности сочетания других факторов, воздействующих на этот показатель.

    Стохастическое моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа. В факторном анализе эти модели используются по трем основным причинам:

      необходимо изучить влияние факторов, по которым нельзя построить жестко детерминированную факторную модель (например, уровень финансового левериджа);
    • необходимо изучить влияние сложных факторов, которые не поддаются объединению в одной и той же жестко детерминированной модели;
    • необходимо изучить влияние сложных факторов, которые не могут быть выражены одним количественным показателем (например, уровень научно-технического прогресса).

    В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:

    а) наличие совокупности;

    б) достаточный объем наблюдений;

    в) случайность и независимость наблюдений;

    г) однородность;

    д) наличие распределения признаков, близкого к нормальному;

    е) наличие специального математического аппарата.

    Построение стохастической модели проводится в несколько этапов:

    • качественный анализ (постановка цели анализа, определение совокупности, определение результативных и факторных признаков, выбор периода, за который проводится анализ, выбор метода анализа);
    • предварительный анализ моделируемой совокупности (проверка однородности совокупности, исключение аномальных наблюдений, уточнение необходимого объема выборки, установление законов распределения изучаемых показателей);
    • построение стохастической (регрессионной) модели (уточнение перечня факторов, расчет оценок параметров уравнения регрессии, перебор конкурирующих вариантов моделей);
    • оценка адекватности модели (проверка статистической существенности уравнения в целом и его отдельных параметров, проверка соответствия формальных свойств оценок задачам исследования);
    • экономическая интерпретация и практическое использование модели (определение пространственно-временной устойчивости построенной зависимости, оценка практических свойств модели).

    Кроме деления на детерминированный и стохастический, различают следующие типы факторного анализа:

    • прямой и обратный;
    • одноступенчатый и многоступенчатый;
    • статический и динамичный;
    • ретроспективный и перспективный (прогнозный).

    При прямом факторном анализе исследование ведется дедуктивным способом - от общего к частному. Обратный факторный анализ осуществляет исследование причинно-следственных связей способом логичной индукции - от частных, отдельных факторов к обобщающим.

    Факторный анализ может быть одноступенчатым и многоступенчатым. Первый тип используется для исследования факторов только одного уровня (одной ступени) подчинения без их детализации на составные части. Например, . При многоступенчатом факторном анализе проводится детализация факторов a и b на составные элементы с целью изучения их поведения. Детализация факторов может быть продолжена и дальше. В этом случае изучается влияние факторов различных уровней соподчиненности.

    Необходимо также различать статический и динамический факторный анализ. Первый вид применяется при изучении влияния факторов на результативные показатели на соответствующую дату. Другой вид представляет собой методику исследования причинно-следственных связей в динамике.

    И, наконец, факторный анализ может быть ретроспективным, который изучает причины прироста результативных показателей за прошлые периоды, и перспективным, который исследует поведение факторов и результативных показателей в перспективе.

    1.2 Детерминированный факторный анализ. Требования к моделированию.

    Детерминизм (от лат. determino - определяю) - учение об объективной закономерной и причинной обусловленности всех явлений. В основе детерминирования лежит положение о существовании причинности, т. е. о такой связи явлений, при которой одно явление (причина) при вполне определенных условиях порождает другое (следствие). }